DOI QR코드

DOI QR Code

Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment

고강도 광원을 이용한 새싹 채소의 살균

  • 박희란 (전주대학교 전통식품산업학과) ;
  • 차경희 (전주대학교 한식조리학과) ;
  • 신정규 (전주대학교 한식조리학과)
  • Received : 2015.10.07
  • Accepted : 2016.01.04
  • Published : 2016.02.29

Abstract

In this study, the effects of intense pulsed light (IPL) treatment on microbial inactivation and quality in rapeseed sprouts were investigated. Untreated rapeseed sprouts exhibit a high level of total aerobic bacteria (TAB) ($1.2{\times}10^7CFU/g$), coliform bacteria (coliform) ($3.3{\times}10^6CFU/g$), and pathogenic E. coli (PE) ($2.1{\times}10^5CFU/g$). The microorganisms found on rapeseed sprouts decreased with exposure to increasing light intensity and treatment time. The greatest reduction in microbial content was observed with a treatment of 1000 V, 5 pps for 10 min, where TAB, coliform, and PE levels decreased to 1.0 log CFU/g, 1.6 log CFU/g, and 1.8 log CFU/g, respectively. In agreement with these data, the microbial inactivation rate increased with the increase in the distance between the light source and the samples during IPL treatment. After IPL treatment of rapeseed sprouts, water content and vitamin C content decreased.

비가열 살균 기술 중 하나인 광펄스 기술을 이용하여 신선편이 식품 중 하나인 새싹채소에 존재하는 미생물의 저감 효과를 검토하였다. 새싹 채소에 존재하는 미생물의 오염도는 총균수 $1.2{\times}10^7CFU/g$, 대장균군 $3.3{\times}10^6CFU/g$, E. coli O157:H7, Staphylococcus aureus, Salmonella 및 Listeria는 각각 $2.1{\times}10^5CFU/g$, $4.9{\times}10^5CFU/g$, $1.7{\times}10^5CFU/g$, $4.3{\times}10^4CFU/g$이었다. 펄스 수 5 pps, 광원과 시료 사이의 거리 6.7 cm의 동일한 조건에서 빛의 세기를 달리하여 처리하였을 경우 빛의 세기가 강할수록 사멸율은 증가하였으며, 빛의 세기 1000 V에서 일반세균은 1.0 log CFU/g, 대장균군은 1.6 log CFU/g, 병원성 대장균은 1.8 log CFU/g의 사멸율을 보였다. 광원과 시료 사이의 거리에 따른 사멸효과는 거리가 짧을수록 사멸율은 증가하여, 광원과 시료 사이의 거리 6.7 cm, 빛의 세기 1000 V, 펄스 수 5 pps에서 일반세균 0.9 log CFU/g, 대장균군 0.8 log CFU/g, 병원성대장균 1.9 log CFU/g의 사멸율을 나타내었다. 광펄스 처리 전후 새싹채소의 수분함량과 비타민 C의 함량변화는 처리 후의 시료가 감소하는 경향을 보였으나 유의적인 차이를 나타내지는 않았다. 새싹채소의 살균에 있어 광펄스 기술은 처리 조건에 따라 90-99%의 사멸율을 나타내어 신선편이 식품의 비가열 살균 기술로서의 적용 가능성을 보였다.

Keywords

References

  1. Hurst WC, Schuler GA. Fresh produce processing: An industry perspective. J. Food Protect. 55: 824-827 (1992) https://doi.org/10.4315/0362-028X-55.10.824
  2. Park SY, Yeon JH, Choi JW, Lee MJ, Lee DH, Kim KS, Park KH, Ha SD. Assessment of contamination levels of foodborne pathogens isolated in major RTE foods marketed in convenience stores. Korean J. Food Sci. Technol. 37: 274-278 (2005)
  3. Jun SY, Kim TH, Hwang SH. The consumption status and preference for sprouts and leafy vegetables. Korean J. Food Preserv. 19: 783-791 (2012) https://doi.org/10.11002/kjfp.2012.19.5.783
  4. Adams MR, Hartley AD, Cox LJ. Factors affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiol. 6: 69-77 (1989) https://doi.org/10.1016/S0740-0020(89)80039-5
  5. Park JY, Na SY, Lee YJ. Present and future of non-thermal food processing technology. Food Sci. Ind. 43: 2-20 (2010)
  6. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlvaney L, Farish O. Pulsed light inactivation of food-related microorganisms. Appl. Environ. Microbiol. 65: 1312-1315 (1999)
  7. Roberts P, Hope A. Virus inactivation by high intensity broad spectrum pulsed light. J. Virol. Method. 110: 61-65 (2003) https://doi.org/10.1016/S0166-0934(03)00098-3
  8. Dunn JE, Clark RW, Ott TW. Pulsed-light treatment of food and packaging. Food Technol. 49: 95-98 (1995)
  9. Barbosa-Canovas GV, Schaffner DW, Pierson MD, Zhang QH. Pulsed light technology. J. Food Sci. 65: 82-85 (2000) https://doi.org/10.1111/j.1750-3841.2000.tb00621.x
  10. Gemma OO, Ingrid AA, Olga MB, Rovert SF. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol. Tec. 56: 216-222 (2010) https://doi.org/10.1016/j.postharvbio.2009.12.011
  11. Kim AJ, Shin JK. Nonthermal sterilization of pathogenic Escherichia coli by intense pulsed light a batch system. Korean J. Food Sci. Technol. 47: 81-86 (2015) https://doi.org/10.9721/KJFST.2015.47.1.81
  12. Jeong CH, Bae YI, Shim KH. Physicochemical properties of Hovenia dulcis Thunb. leaf tea. Korean J. Postharvest Sci. Technol. 7: 117-123 (2000)
  13. Kim JS, Bang OK, Chang HC. Examination of microbiological contamination of ready-to-eat vegetable salad. J. Fd. Hyg. Safety 19: 60-65 (2004)
  14. Bae YM, Hong YJ, Kang DH, Heu SG, Lee SY. Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J. Food Sci. Technol. 165: 5-28 (2011)
  15. Solberg M, Buckalew JJ, Chen CM, SChaffner DW, O'Neil K, Mcdowell J, Post LS, Boderck M. Microbiological safety assurance system for food service facilities. Food Technol. 44: 68-73 (1990)
  16. Cho HY, Shin JK, Song YA, Yoon SJ, Kim JM, Pyun YR. Nonthermal pasteurization of lactic acid bacteria by high intensity light pulse. Korean J. Food Sci. Technol. 34: 631-636 (2002)
  17. Park KJ, Lim JH, Kim JH, Jeong JW, Jo JH, Jeong SW. Reduction of microbial load on radish (Raphanus satius L.) seeds by aqueous chlorine dioxide and hot water treatments. J. Food Preserv. 14: 487-491 (2007)
  18. Anderson JG, Rowan NJ, MacGregor SJ, Fouracre RA, Farish O. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Trans. Plasma Sci. 28: 83-88 (2000) https://doi.org/10.1109/27.842870
  19. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlcaney L, Farish O. Pulsed-light inactivation of food-related microorganisms. Appl. Environ. Microbiol. 65: 1312-1315 (1999)
  20. MacGregor SJ, Anderson JG, Fouracre RA, Farish O, MaIlvancy L, Rowan NJ. Light inactivation of food-related pathogenic bacteria using a pulsed power source. Lett. Appl. Microbiol. 27: 67-70 (1998) https://doi.org/10.1046/j.1472-765X.1998.00399.x
  21. Ghasemi Z, Macgregor S, Anderson J, Lamont Y. Development of an integrated sold-state generator for light inactivation of foodrelated pathogenic bacterial. Meas. Sci. Technol. 14: N26-N32 (2003) https://doi.org/10.1088/0957-0233/14/6/402
  22. Han KH. Nonthermal sterilization against food-borne pathogens by high intensity pulsed light. MS thesis, Hoseo University, Cheonan, Korea (2010)
  23. Kim BR, Kim AJ, Shin JK. Effect of sterilization by intense pulsed light on radiation-resistant bacterium, Micrococcus roseus. Korean J. Food Sci. Technol. 45: 248-251 (2013) https://doi.org/10.9721/KJFST.2013.45.2.248
  24. Cheigh CI, Mun JH, Chung MS. Nonthermal sterilization and shelf-life extension of seafood products by intense pulsed light treatment. Korean J. Food Nutr. 25: 69-76 (2012) https://doi.org/10.9799/ksfan.2012.25.1.069
  25. Arts-Hernndez F, Robles PA, Gmez PA, Toms-Callejas A, Arts F. Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biol. Tec. 55: 114-120 (2010) https://doi.org/10.1016/j.postharvbio.2009.09.002
  26. Hong HJ, Kim AJ, Park HR, Shin JK. Changes in physicochemical properties of paprika by intense pulsed light treatment. Korean J. Food Sci. Technol. 45: 339-344 (2013) https://doi.org/10.9721/KJFST.2013.45.3.339
  27. Allende A, Alicia M, Buenda B, Toms-Barbern F, Gil, MI. Impact of combined postharvest treatments (UV-C, gaseous $O_3$, superatmospheric $O_2$ and high $CO_2$) on health promoting compounds and shelf-life strawberries. Postharvest Biol. Tec. 46: 201-2011 (2007) https://doi.org/10.1016/j.postharvbio.2007.05.007
  28. Falguera V, Pagan J, Ibarz A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT-Food Sci. Technol. 44: 115-119 (2011) https://doi.org/10.1016/j.lwt.2010.05.028

Cited by

  1. Contamination level of commercialized pepper and sterilization effect by intense pulsed light in batch system vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.525