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Abstract—Thanks to superior leakage energy 
efficiency compared to SRAM cells, STTRAM cells 
are considered as a promising alternative for a 
memory element in on-chip caches. However, the 
main disadvantage of STTRAM cells is high write 
energy and latency. In this paper, we propose a low-
cost write filter (WF) cache which resides between the 
load/store queue and STTRAM-based L1 data cache. 
To maximize efficiency of the WF cache, the line 
allocation and access policies are optimized for 
reducing energy consumption of STTRAM-based L1 
data cache. By efficiently filtering the write 
operations in the STTRAM-based L1 data cache, our 
proposed WF cache reduces energy consumption of 
the STTRAM-based L1 data cache by up to 43.0% 
compared to the case without the WF cache. In 
addition, thanks to the fast hit latency of the WF 
cache, it slightly improves performance by 0.2%.    
 
Index Terms—Spin torque transfer random access 
memory, filter cache, energy efficiency, performance, 
L1 data cache    

I. INTRODUCTION 

The advent of new memory cells has been providing a 
new opportunity for computer architecture design. Spin 
torque transfer random access memory (STTRAM) cells 
are one of the promising memory cells which can 
potentially replace SRAM cells. They have significantly 

lower leakage energy consumption and smaller cell size 
with comparable (or less) read access energy and latency 
compared to the conventional 6T SRAM cells. Due to 
their better leakage energy efficiency, there have been 
many proposals to use STTRAM cells for on-chip caches 
[1-7]. However, the main disadvantages of STTRAM 
cells are high write energy and latency. Particularly, a 
long write latency of STTRAM cells may lead to a 
severe performance loss in the case of L1 caches where 
accesses to the cache occur very frequently. Thus, the 
employment of STTRAM cells for on-chip caches have 
been explored mainly for large-scale L2 or last-level 
caches where write operations occur sporadically. In this 
case, a long latency of write operations can be 
sufficiently hidden by write buffers or queues as most of 
the write operations will be filtered by L1 caches.  

On the other hand, write energy and latency of 
STTRAM cells can be optimized by adjusting the 
retention time of the cells [7, 8]. It enables a deployment 
of the STTRAM cells in L1 caches [8, 9] as it can reduce 
write latency as well as write energy of the STTRAM 
cells. Though write energy and latency of the optimized 
STTRAM cells are still higher than those of 6T SRAM 
cells, thanks to the lower read access energy and leakage 
power, energy consumption of the STTRAM-based L1 
caches can be reduced by up to 40% with a negligible 
performance loss [8] compared to that of the SRAM-
based L1 caches. However, a portion of write dynamic 
energy consumption of STTRAM-based L1 caches is still 
significant (~45%), which means there is a considerable 
room for energy optimization in STTRAM-based L1 
caches.  

In the case of L1 instruction caches, they do not have 
store operations and write energy is only consumed when 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 81 

 

a cache line is filled into the cache. Hence, just 
employing the optimized STTRAM cells to the L1 
instruction cache without any further optimization would 
nearly yield an optimal energy consumption. However, in 
the case of L1 data caches, a situation is totally different 
because of the store operations. Since L1 data caches are 
accessed nearly every cycle due to superscalar and out-
of-order executions, store operations frequently occur in 
the L1 data caches. Consequently, it leads to huge write 
dynamic energy consumption in STTRAM-based L1 data 
caches. 

For energy reduction in STTRAM-based L1 data 
caches, we propose a locality-aware write filter (WF) 
cache which resides between the processor core’s 
load/store queue (LSQ) and L1 data cache. It primarily 
filters write accesses (as well as read) to the L1 caches, 
reducing the energy consumption of the STTRAM-based 
L1 data cache. Moreover, thanks to fast hit latency of WF 
cache, it brings a little performance benefit. The main 
architecture of our WF cache is similar to the 
conventional filter caches [10, 11]. However, we use 
novel WF cache allocation and access policies optimized 
for STTRAM-based L1 data caches. 

The rest of this paper is organized as follows. Section 
2 presents our motivational study which advocates a need 
for write dynamic energy optimization in STTRAM-
based L1 data caches. Section 3 describes our proposed 
write filter cache architecture with new line allocation 
and access policies. Section 4 describes our evaluation 
results. Section 5 briefly skims recent literature regarding 
STTRAM-based on-chip cache designs and filter cache 
designs. Lastly, Section 6 concludes this paper. 

II. MOTIVATION 

STTRAM cells typically have lower (or comparable) 
read access latency and energy, and significantly less 
leakage power consumption compared to the 
conventional 6T SRAM cells. However, an immediate 
deployment of STTRAM cells for on-chip caches may 
have energy and performance inefficiency due to their 
high write dynamic energy consumption and latency. In 
order to mitigate those demerits, one can optimize write 
energy and latency of the STTRAM cells by reducing 
retention time of the cells [7, 8]. The shorter retention 
time the STTRAM cells have, the lower write energy and 
latency they tend to have. 

A study in [8] shows a considerable energy reduction 
of the L1 cache by employing the optimized STTRAM 
cells that have a shorter retention time. By paying 
periodic refresh energy, it can reduce write dynamic 
energy in the STTRAM-based L1 cache. It sufficiently 
advocates the use of STTRAM cells in the L1 caches in 
addition to the large-scale L2 or L3 caches. However, 
write dynamic energy consumption in STTRAM-based 
L1 data cache is still significant even though the L1 data 
caches adopt the optimized STTRAM cells (which have 
reduced write energy and shorter retention time). As 
shown in Fig. 1 even with the optimized STTRAM cells, 
write dynamic energy consumption occupies 45% in 
energy consumption of the STTRAM-based L1 data 
cache, on average. It means there is still a significant 
room for optimizing write energy consumption in 
STTRAM-based L1 data caches. 

In L1 data caches, there are two categories that cause 

 

Fig. 1. An energy breakdown of STTRAM-based L1 data cache. The simulation framework and energy parameters are presented in 
Section 4. 
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write dynamic energy consumption: data store and block 
fill. Data store operations occur when the processor core 
executes store instructions while block fills occur when 
there is a L1 data cache miss. Since the miss rates in L1 
data caches are typically very low (~5%) in general 
programs, most of the write energy consumption comes 
from the data store operations issued from the load-store 
queue (LSQ). Therefore, energy reduction in data store 
operations is a critical factor for energy optimization in 
STTRAM-based L1 data caches. 

III. WRITE FILTER CACHE DESIGN 

1. Architecture 
 
To minimize store operations to the L1 data cache, we 

propose to use a small write filter (WF) cache between 
the load-store queue (LSQ) and L1 data cache as 
depicted in Fig. 2. The main architecture for our WF 
cache is similar to the ones previously proposed [10, 11]. 
These techniques are mainly for performance 
improvement and energy reduction by exploiting the fast 
hit latency and low access energy of the filter cache. 
However, the main purpose of our filter cache is to filter 
write (store) operations to the L1 data cache which 
eventually leads to a huge write energy reduction in the 
STTRAM-based L1 data cache. Thus, our WF cache has 
different filter cache allocation and access policies 
(which will be explained in Sections 3.2 and 3.3) with 
the hardware architecture similar to the conventional 
filter caches. 

Our WF cache is composed of the conventional 6T 
SRAM cells as it should have fast access time and low 
read/write dynamic energy. The associativity of the WF 
cache is fully-associative and the replacement policy is 
least recently used (LRU). The line size of the WF cache 

is 64 Byte (same as the L1 data cache line size in our 
evaluation). For design simplicity, the WF cache has a 
strict inclusion property with the L1 data cache. Hence, 
when the cache line in the L1 data cache is evicted, the 
corresponding line in the WF cache is also evicted. In 
this paper, we use 4-entry and 8-entry configurations for 
the WF cache size. The higher number of entries will 
increase a hit rate of the WF cache while it also increases 
dynamic and leakage energy overhead from the WF 
cache. 

In the chip multi-processor architecture with write-
through caches, there is a write buffer to hide write 
latency. However, the typical write buffer resides 
between L1 and L2 cache while the WF cache is between 
the LSQ and L1 cache. Thus, our WF cache can be used 
along with the write buffers. 

To support cache coherence, the snooping messages 
must be sent to the other core’s L1 data cache whenever 
the store operation is done in either WF cache or L1 data 
cache. In order to address this case, as shown in Fig. 2, 
snooping messages are sent from the WF cache or L1 
data cache. When a store hit occurs in the WF cache, the 
state of the corresponding shared cache line is changed to 
modified state and an invalidation message is sent to the 
other cores. The updated data is written in the WF cache 
and also goes to the write buffer for L2 cache update in 
the case of write-through cache. In this case, the data is 
not updated in the L1 data cache. Note that the data 
update in the L1 cache occurs when the dirty line is 
evicted from the WF cache. For MESI cache coherence 
protocol, two-bit storage per cache line in the WF cache 
is required for maintaining the coherency status. Since 
our WF cache has only small number of entries (~8), the 
area overhead for this storage is negligible. 

When the cache invalidation signal comes from the 
other cores, the cache line in both WF cache and L1 data 
cache must be invalidated. To support this, the 
invalidation signal is also sent to the WF cache and the 
corresponding cache line is invalidated if there is a cache 
line that corresponds to the address designated in the 
invalidation message. To eliminate a latency overhead 
due to the tag-lookup during the cache snooping, we can 
have duplicate copy of the tags in WF caches. Since the 
tag size of the WF cache entry is small (42-bit per entry 
when using 48-bit physical address), the area overhead is 
very small. 

Processor core

LSQ STTRAM-based 
L1 data cacheWF cache

snooping messages 
to the other cores

snooping messages 
from the other cores

Duplicated 
tag storage

 

Fig. 2. The overall architecture. 
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2. WF cache Line Allocation Policy 
 
The line allocation policy of the WF cache plays a key 

role for reducing write dynamic energy consumption in 
STTRAM-based L1 data caches. In this paper, we 
propose two different line allocation policies for the WF 
cache: WF_RD and WF_WR. The WF_RD policy is 
similar to the allocation policy of Hit Cache [10]. The 
WF_RD policy does not allocate the cache line to the WF 
cache along with the block (line) fill in the L1 data cache 
(i.e., when there is a cache miss). When the read (load) 
hit occurs after the line fill in the L1 data cache, then the 
corresponding cache line is allocated to the WF cache. 
The main advantage of the WF_RD policy is that it can 
filter both consecutive read and write accesses to the L1 
data cache when there is a high read/write temporal 
locality. Since the WF cache hit latency is smaller than 
the L1 data cache hit latency, it would also lead to better 
performance. However, the main disadvantage of the 
WF_RD policy is that the WF cache is mostly used for 
filtering read operations in the L1 data cache. Recall that 
typical programs tend to execute more number of load 
instructions than store instructions. It implies the 
WF_RD policy incurs frequent line replacements in the 
WF cache, potentially resulting in more evictions of the 
cache lines that have high temporal locality on write 
operations. Because filtering write operations is a critical 
factor for STTRAM-based L1 data cache energy 
reduction, the WF_RD policy may lead to suboptimal 
energy reduction in the L1 data cache. 

The other policy (WF_WR) allocates the cache line to 
the WF cache when the cache write (store) hit occurs in 
the L1 data cache. The WF_WR policy operates as a 
prefetching mechanism for the cache line which will be 
written (by store instructions) in the near future. With the 
WF_WR policy, the WF cache tends to have a lower 
replacement rate than the WF_RD, which in turn leads to 
fewer evictions of the cache lines that have a high 
temporal locality on write operations. Hence, the 
WF_WR can filter the write operations better than the 
WF_RD policy.  

The conventional filter caches (i.e., L0 caches) 
allocates the cache line in the filter caches whenever 
there is a cache miss in the filter cache. It implies a new 
cache line is always allocated in both L1 cache and filter 
cache when there is a cache miss in the L1 cache. In 

contrast, our new line allocation policy adopts a lazy 
allocation of the cache lines in the WF cache. The 
rationale behind this decision is that too frequent cache 
line replacement between the WF cache and L1 data 
cache would result in more evictions of the cache line 
that will be accessed (particularly for store operations) in 
the near future. To summarize, Table 1 describes the 
cases when the line allocation in the WF cache occurs 
across various allocation policies.  

As in the general write-back cache, a dirty line 
eviction from the WF cache incurs a cache line update 
(write operation) in the L1 data cache for data coherence. 
In the case of the clean line eviction, it can be silently 
evicted (i.e., no write operation in the L1 data cache) 
since we enforce the strict inclusion property between the 
WF cache and L1 data cache. 

 
3. WF Cache Access Policy 

 
Fig. 3 shows the line access policy and required clock 

cycles of the WF cache. The WF cache is always 
accessed first before accessing the L1 data cache. In the 
case of data load hit in the WF cache, the data is served 
within 1 cycle. Similar to the case of data load, data store 
hit in the WF cache also takes 1 cycle for the data to be 
updated in the WF cache. In the case of WF cache misses, 
it takes different clock cycles for load and store since the 
STTRAM cells have a longer write latency than the read. 
In our configuration, the read operation takes 2 cycles for 
an L1 data cache access while it takes 4 cycles for a write 
operation [8]. Thus, in the case of WF cache miss and L1 
data cache hit, it takes total 3 cycles and 5 cycles for load 
and store, respectively. 

 
4. WF Cache Line Allocation and Write-Back Overhead 
 

Along with the access latency overhead of the WF 
cache, there are line allocation and write-back latency 
overhead. However, the line allocation to the WF cache 

Table 1. Line allocation policies in the WF cache and the 
conventional filter cache (FC) [11] 

 Cache miss Cache load hit Cache store hit 
WF_RD X O O 
WF_WR X X O 

FC O O O 
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does not need to stall the processor pipeline since the 
required data for load instructions can be directly 
forwarded from the L1 data cache to the LSQ regardless 
of the WF cache line allocation. In the case of write-back 
from the WF cache to the L1 data cache, it takes 4 cycles 
to update the L1 data cache. It can be done in the 
background and does not make the CPU core be stalled. 
However, when the CPU core accesses the cache line 
which are currently written (by write-back from the WF 
cache or line-fill from the L2 cache), the cache access 
cycle is increased by the remaining cycles for the 
completion of write operations in L1 data cache. We 
carefully modeled these overheads in our evaluation to 
obtain an accurate simulation results. Since long physical 
distance between the WF cache and L1 data cache would 
result in additional latency overhead for line allocation 
and write-back. To minimize data transfer latency 
overhead, the WF cache designer should carefully 
determine the distance between the WF cache and the L1 
data cache as close as possible. Careful P&R (place & 

route) process during the processor design would result 
in negligible data transfer latency overhead. 

 
5. Analytical Performance Model for WF Cache 

 
In this subsection, we demonstrate an analytical 

performance model for our WF cache. To estimate 
memory-side performance, we use AMAT (average 
memory access time) for performance metric. Based on 
the model shown in [12], we extend the analytical model 
to describe AMAT when there is filter cache between the 
LSQ and L1 data cache. 

The conventional (i.e., without filter cache) AMAT 
with two-level cache hierarchy can be calculated as 
follows: 

 
AMATconv = HRL1D * HLL1D + MRL1D * (HRL2 * HLL2 +  

                       MRL2 * LMEM.)               (1) 
 
The explanations of abbreviations in Eqs. (1-3) are 

shown in Table 2. For extension of this model to cover 
filter cache (i.e., L0 cache), we add terms for filter 
caches as follows: 

 
 AMAT = HRFC * HLFC + MRFC * AMATconv    (2) 

 
For STTRAM-based L1 data caches, the read and 

write latency will be different. To reflect this impact, the 
HLL1D can be calculated as follows: 

 
 HLL1D = RatioLD * RLL1D + RatioST * WLL1D    (3) 

 

(a) in the case of load  
 

 

(b) in the case of store 

Fig. 3. The WF cache access policy. 

 

Table 2. The meaning of abbreviations used in Eqs. (1-3) 

Abbre. Meaning 
HRL1D L1 data cache hit rate 
HLL1D L1 data cache hit latency 
MRL1D L1 data cache miss rate 
HRL2 L2 cache hit rate 
HLL2 L2 cache hit latency 
MRL2 L2 cache miss rate 
LMEM Main memory access latency 
HRFC Filter cache hit rate 
HLFC Filter cache hit latency 
MRFC Filter cache miss rate 

RatioLD The ratio between hit load instructions and hit memory 
access instructions (load+store) 

RatioST 
The ratio between hit store instructions and hit 

memory access instructions (load+store) 
RLL1D L1 data cache read latency 
WLL1D L1 data cache write latency 
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Since full performance simulation often takes huge 
time, our simple analytical performance model can 
reduce the development cycle of STTRAM-based L1 
cache with filter caches. Please note that the simulation 
statistics shown in Table 2 can easily be collected via fast 
cache-only simulation tools (e.g., DINERO [13]). 

IV. EVALUATION 

For energy evaluations, we use an SRAM and 
STTRAM energy parameters from [8]. For STTRAM-
based L1 data caches, we assume that the cell 
configuration from [8] (denoted as ‘lo2’ in [8]) is used. 
For program-dependent energy evaluations, cache access 
traces and counts (for both WF and L1 data caches) are 
extracted from M-SIM [14] which is originated from 
SimpleScalar [15] architectural simulator. We evaluate 
performance in terms of IPC (instruction per clock cycle) 
which is also extracted from M-SIM. The micro- 
architectural parameters in our M-SIM simulator are 
tuned for ARM Cortex-A15 [16] as close as possible. 
The L1 data cache configuration is 4-way set associative 
32 KB cache with LRU replacement policy and line size 
is 64 B. Table 3 summarizes the parameters of SRAM 
and STTRAM-based L1 data caches for energy and 
performance evaluations. 

We also take the filter cache energy consumption into 
consideration. In this paper, we show two different 
configurations for the filter cache size: 4-entry (SR_E4, 
ST_E4, ST_WF_WR_E4 and ST_WR_RD_E4) and 8-
entry (SR_E8, ST_E8, ST_WF_WR_E8 and 
ST_WR_RD_E8). Table 4 summarizes energy and 
latency parameters for the filter (as well as WF) cache 
which are derived from CACTI [17]. Please note that 
energy evaluation results shown in Section 4.1 already 
include the filter cache energy consumption except for 

the case of not using filter caches (SR and ST 
configurations). 

For comparison with the prior art, we also show the 
energy and performance results of the conventional filter 
cache. The SR_E4, SR_E8, ST_E4, and ST_E8 
correspond to the case where SRAM-based L1 cache 
with the 4 and 8-entry conventional filter cache and 
STTRAM-based L1 cache with 4 and 8-entry 
conventional filter cache, respectively. To summarize 
various configurations, Table 5 shows the various 
configurations and their abbreviations for conciseness. 

We run selected 16 programs from SPEC2006 
benchmark suite. We fast-forward 2 billion instructions 
and actually run 1 billion instructions for energy and 
performance evaluations. We assume the clock frequency 
of the processor as 2 GHz. 

 
1. Energy 

 
Fig. 4 shows normalized L1 data cache energy 

consumption results across various configurations. 
Compared to SRAM-based L1 data cache, STTRAM-
based L1 data cache (ST configuration in Fig. 4) reduces 
energy consumption by 58% on average due to low read 
access energy and leakage energy of STTRAM cells. 

Table 3. Energy and latency parameters (45 nm process node) 
for SRAM- and STTRAM-based L1 data cache [8] 

 SRAM-based STTRAM-based (‘lo2’ in 
[8]) 

Read energy (nJ) 0.075 0.035 
Write energy (nJ) 0.059 0.187 

Leakage power (mW) 57.7 1.98 
Read latency (cycle) 3 2 
Write latency (cycle) 3 4 
Retention time (us) - 26.5 

 

Table 4. The filter cache energy and latency parameters (45 nm 
process node) derived from CACTI [17]. 

 *_E4 *_E8 
Access energy (nJ) 0.003890 0.004683 

Leakage power (uW) 21.6 26.6 
Read latency (cycle) 1 1 
Write latency (cycle) 1 1 
 

Table 5. Various configurations compared in Sections 4.1 and 
4.2. The difference between the FC, WF_RD, and WF_WR is 
explained in Table 1 

Configurations Meaning 
SR SRAM-based L1 data cache 

SR_E4 SRAM-based L1 data cache + 4-entry FC 
SR_E8 SRAM-based L1 data cache + 8-entry FC 

ST STTRAM-based L1 data cache 
ST_E4 STTRAM-based L1 data cache + 4-entry FC 

ST_WF_RD_E4 STTRAM-based L1 data cache + 4-entry WF_RD  
ST_WF_WR_E4 STTRAM-based L1 data cache + 4-entry WF_WR 

ST_E8 STTRAM-based L1 data cache + 8-entry FC 
ST_WF_RD_E8 STTRAM-based L1 data cache + 8-entry WF_RD  
ST_WF_WR_E8 STTRAM-based L1 data cache + 8-entry WF_WR 
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However, with the WF cache, one can further reduce 
STTRAM-based L1 data cache energy. The 
ST_WF_RD_E8 configuration can reduce energy by 
32% compared to the STTRAM configuration. In the 
case of ST_WF_WR_E8, our WF cache reduces L1 data 
cache energy by 43% compared to the STTRAM 
configuration. The ST_WF_WR policies show more 
energy reduction compared to the ST_WF_RD policies. 
This is because of higher WF cache write hit rates with 
the WF_WR policies than those with the WF_RD as 
shown in Fig. 5. Though the ST_WF_RD policies show 
far higher WF cache read hit rate, increasing WF cache 
write hit rates contributes to energy reductions much 
more than the WF cache read hit rates. In addition, a 
larger number of the WF cache entries also contributes to 
energy reductions as it yields higher WF cache hit rates 
(for both read and write). 

Our proposed policies (ST_WF_RD and ST_WF_WR), 
which are geared towards STTRAM-based L1 data 
caches, show better energy-efficiency compared to the 
conventional filter cache (FC configurations). The 
ST_WF_RD_E8 and ST_WF_WR_E8 policies show less 
energy consumption by 6% and 21% (on average) 
compared to the ST_E8. It means our ST_WF_RD and 
ST_WF_WR policies are more suitable for STTRAM-
based L1 cache and filter cache. 

As shown in Fig. 4, there are some programs which 
can be regarded as outliers. In the case of CactusADM, 
the ST_WF_WR_4E shows more energy consumption 
than the ST configuration. This is because there is much 
fewer number of store operations in CactusADM than the 

other programs, meaning that there is less room for write 
energy reduction (as already depicted in Fig. 1). 
Consequently, the energy overhead from the WF cache 
becomes more than the energy reduction from the L1 
data cache. In the case of lbm, the ST_WF_WR policies 
also incur more energy consumption than the STTRAM 
configuration. The main reason for lbm is low write hit 
rates (~0%) in the WF cache due to the low temporal 
locality on store operations. In the case of hmmer, the 
ST_WF_WR shows significant energy reduction while 
the ST_WF_RD consumes more energy than the 
STTRAM configuration. This is because the ST_WF_ 
WR shows much higher WF cache write hit rates (~96% 
for both ST_WF_WR_4E and ST_WF_WR_8E) than 
those in the case of the ST_WF_RD (only 22% and 40% 
for ST_WF_RD_4E and ST_WF_RD_8E, respectively). 

We also estimate the system-level energy consumption 
by using McPAT 1.3 [18]. Fig. 6 shows the component-
level energy breakdown in dual-core ARM Cortex-A15 
based system-on-a-chip (SOC). We also use 45nm 
process node for the energy estimation. In the results 
shown in Fig. 6, the SRAM-based L1 data cache is used. 
Since L1 data cache consumes ~7% energy in the entire 
SOC, our ST_WF_WR_E8 can reduce system-level 
energy by 5.4% compared to the SR configuration. 
Compared to the ST configuration, our ST_WF_WR_E8 
configuration reduces system-level energy consumption 
by 1.3%. 

Though we do not compare energy results when using 
the optimized STTRAM cells in the L1 data cache [8] 
with ours, our WF cache will reduce energy consumption 

 

Fig. 4. Normalized energy consumption across the various configurations. The results are normalized to the energy results when 
using SRAM cells in the L1 data cache. 
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of STTRAM-based L1 data cache regardless of which 
type of optimized STTRAM cells is used in the L1 data 
cache. This is because our WF cache is orthogonal to the 
STTRAM cell optimization. We leave quantifying the 
impact of STTRAM cells in the L1 data cache when 
using the WF cache as our future work. 

 
2. Performance 

 
Fig. 7 shows performance evaluation results across 

various configurations. As in Section 4.1, performance 
results for each configuration are also normalized to 
those for SRAM-based L1 data cache configuration. The 
ST configuration shows almost identical performance 
compared to the SR configuration. Though the ST has 
higher write latency, lower read latency of STTRAM 
cells offsets this latency overhead. When using the WF 
caches, one can slightly improve performance by up to 
0.2% (in the case of using ST_WF_RD_8E) compared to 
the ST configuration since a WF cache hit enables faster 
data access. Between the ST_WF_RD and ST_WF_WR, 
the ST_WF_RD policies show slightly better 
performance compared to the ST_WF_WR policies. This 
is because ST_WF_RD yields much higher WF cache 
read hit rates as shown in Fig. 5. Since the processor 

pipeline is out-of-order issue and programs shown in Fig. 
7 are not quite load/store-intensive (except for mcf), 
performance improvement from the WF_RD policies is 
marginal. 

As an outlier, in the case of mcf, the ST_WF_RD 
significantly improves performance by 25~27% 
compared to the ST configuration while the ST_WF_WR 
shows little performance benefit. For mcf, the WF_WR 
only shows WF cache read hit rates of 24~29% while the 
WF_RD shows those of 64~78%. The huge differences 
in the WF cache read hit rates for mcf translate into the 
performance difference between the ST_WF_RD and 
ST_WF_WR. 

Compared to the conventional filter cache (FC), our 
proposed policies (WF_RD and WF_WR) show only a 
small performance loss. Compared to ST_E8, the 
ST_WF_RD_E8 and ST_WF_WR_E8 show only 0.5% 
and 0.6% performance losses on average. Considering an 
efficient trade-off between the energy and performance, 
our ST_WF_RD and ST_WF_WR show much better 
results thanks to the huge energy benefit. 

 
3. Area Overhead 

 
The area overhead of our WF cache is <5% of the 

STTRAM-based L1 data cache area. As shown in Table 
6, 4-entry WF cache area overhead is only 3.8% 
compared to the STTRAM-based L1 data cache. 
Compared to the SRAM-based L1 data cache, the area 
overhead of the WF cache becomes ~1%. For multi-core 
cache coherence, the WF cache requires duplicated tag 
arrays as explained in Section 3.1. However, tag array 
size in the cache is small (<10% of data array size). Thus, 
even with the duplicated tag storage, one can 
conservatively estimate that the WF cache area overhead 
is under 5% of the entire STTRAM-based L1 data cache 
area. Considering the L1 data cache occupies only a 
small portion in the entire processor area, the area 
overhead of the WF cache will be negligible compared to 
the whole processor area. 

 

Fig. 5. Average WF cache read and write hit rates. 
 

 

Fig. 6. Energy breakdown in dual-core ARM Cortex-A15 based 
system-on-a-chip (SOC) derived from McPAT [18]. 
 

Table 6. The WF cache area overhead 

 vs. SRAM-based vs. STTRAM-based 
ST_WF_*_4E 0.84% 3.77% 
ST_WF_*_8E 1.00% 4.47% 
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V. RELATED WORK 

Many proposals for STTRAM-based cache 
architecture have been introduced. However, many of 
those proposals focus on energy reduction in L2 or last-
level caches which exploit lower leakage power 
consumption and smaller cell area of STTRAM cells 
compared to SRAM cells [1-7]. Several proposals have 
been introduced for STTRAM-based L1 caches. In [8], 
STTRAM-based L1 and L2 cache architectures are 
explored by using the write energy-optimized STTRAM 
cells with shorter retention time. In [19], an SRAM-
STTRAM hybrid L1 cache design is introduced for 
multi-core cache coherence. For refresh energy reduction 
in STTRAM-based L1 caches, a ‘no refresh’ scheme was 
proposed in [9]. A compiler-assisted STTRAM-based L1 
cache architecture was also proposed in [20]. In [20], a 
small loop cache is used to reduce energy consumption in 
STTRAM-based L1 instruction caches. Unlike the 
proposals introduced above, we exploit a small write 
filter cache for STTRAM-based L1 data cache energy 
reduction. As already demonstrated in Section 4, our 
technique not only reduces L1 data cache energy but also 
improves performance with small hardware cost. 

For filter cache design, several different types of filter 
cache or victim caches have been proposed. In [11], the 
filter cache architecture was proposed for power 
reduction and energy-delay product improvement. 
Several studies have focused on reducing energy 
consumption in L1 instruction caches. In [22], a different 
type of filter cache was proposed to reduce processor’s 

front-end power consumption. The authors of [22] 
proposed decode filter cache that contains high-locality 
decoded instructions. In [23] and [24], novel types of 
filter cache architectures are explored for multi-core 
processors and temperature management, respectively. 
Different from the previous studies on filter cache 
architecture, our work focuses on reducing energy of 
STTRAM-based L1 data cache with new block allocation 
policies: WF_RD and WF_WR. 

VI. CONCLUSIONS 

In this paper, we propose the WF cache that efficiently 
filters write operations in the STTRAM-based L1 data 
cache. We propose two different line allocation policies: 
WF_RD and WF_WR. The WF_RD is geared towards 
filtering both read and write operations in the L1 data 
cache while the WF_WR is primarily for filtering write 
operations. According to our evaluation results, our WF 
cache (in the case of ST_WF_WR_E8) reduces energy 
consumption of STTRAM-based L1 data cache by up to 
43%. Furthermore, it slightly improves performance by 
0.2% (in the case of ST_WF_RD_E8). We believe that 
our WF cache can be a low-cost alternative that enables 
energy- and area-efficient STTRAM-based L1 data cache. 
As our future work, we are planning to extend our work 
as follows: 

1) we will develop an adaptive scheme which switches 
between the WF_WR and WF_RD policies in runtime by 
referring to the workload characteristics; 

2) we will evaluate our WF cache with the adaptive 

 

Fig. 7. Normalized performance (IPC) across the various configurations. The results are normalized to the performance results when 
using SRAM cells in the L1 data cache. 
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scheme in full system simulator with running operating 
systems; 

3) we will quantify energy and performance impact of 
our WF cache with the adaptive scheme when using the 
various STTRAM configurations as in [8]. 
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