
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 ISSN(Print)  1598-1657 
http://dx.doi.org/10.5573/JSTS.2016.16.1.118 ISSN(Online) 2233-4866  

 

Manuscript received Sep. 7, 2015; accepted Dec. 24, 2015 
Dept. of Information and Communication Engr., Inha University, 
Incheon, 22212, Korea 
E-mail : hhlee@inha.ac.kr 

 
 

Efficient Algorithm and Architecture for Elliptic Curve 
Cryptographic Processor     

 
Tuy Tan Nguyen and Hanho Lee  

 
 
 
 

Abstract—This paper presents a new high-efficient 
algorithm and architecture for an elliptic curve 
cryptographic processor. To reduce the computational 
complexity, novel modified Lopez-Dahab scalar point 
multiplication and left-to-right algorithms are 
proposed for point multiplication operation. 
Moreover, bit-serial Galois-field multiplication is used 
in order to decrease hardware complexity. The field 
multiplication operations are performed in parallel to 
improve system latency. As a result, our approach can 
reduce hardware costs, while the total time required 
for point multiplication is kept to a reasonable 
amount. The results on a Xilinx Virtex-5, Virtex-7 
FPGAs and VLSI implementation show that the 
proposed architecture has less hardware complexity, 
number of clock cycles and higher efficiency than the 
previous works.    
 
Index Terms—Elliptic curve cryptography, point 
multiplication, bit-serial, architecture   

I. INTRODUCTION 

Elliptic curve cryptography (ECC), an approach based 
on the algebraic structure of elliptic curves over finite- 
fields, is a public key cryptography that has attracted 
great attention in recent years. It offers security similar to 
traditional systems, such as Rivest, Shamir, & Adleman 
(RSA), but with significantly smaller key lengths [1]. For 
example, 163-bit ECC is considered equivalent to 1024-

bit RSA [1, 2]. Thanks to this advantage, ECC can be 
implemented to strictly consider resource limitations. 

An elliptic curve E over a Galois field (GF) is the set 
of solutions to Eq. (1). A point P(xP, yP) is a pair of 
elements that satisfies 

 
 y2 + xy = x3 + ax2 + b            (1) 

 
The underlying operation in ECCs is scalar point 

multiplication, Q = kP, the multiplication of an elliptic 
curve point P by a scalar k to give the resultant point Q 
[3, 4]. To perform this operation, the point addition and 
point doubling operations are combined effectively.  

Three main steps to calculate the point multiplication 
are: 1) convert point P from affine coordinate to project 
coordinate; 2) compute Q = kP as projective coordinate; 
and 3) convert point Q from projective coordinate to 
affine coordinate. Fig. 1 describes the main operations to 
perform ECC point multiplication.  

Recently, several field-programmable gate array 
(FPGA)-based ECC processors and hardware 

 

Fig. 1. Overview architecture for ECC point multiplication.  



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 119 

 

accelerators have been presented in the literature [5, 7]. 
In these papers, the authors showed various techniques to 
improve the performance of the ECC operation. The 
typical goal is to reduce the latency of ECC point 
multiplication in terms of the number of required clock 
cycles, and reduce the hardware complexity. 

In this paper, we propose a novel idea for an ECC 
algorithm and architecture in projective coordinates to 
reduce hardware complexity and keep latency to a 
reasonable amount. Specifically, we use the bit-serial 
multiplication concept to reduce hardware complexity. 
Moreover, a delay-efficient architecture, in which the 
field multiplication operations and the field squaring 
operations are performed in parallel, is proposed in order 
to balance hardware complexity and latency efficiency.  

The rest of this paper is organized as follows. In 
Section II, we provide some background information, 
including finite-field and ECC point multiplication 
algorithms. The proposed algorithm is presented in 
Section III. Section IV presents the proposed ECC point 
multiplication architecture and the novel design 
techniques. In Section V, the results and a performance 
comparison are presented. Finally, a conclusion is 
provided in Section V.   

II. BACKGROUND 

1. Finite-field Arithmetic 
 
Finite-fields, which are defined as a set of elements 

denoted as GF(2m), play an important role in the 
calculations for cryptography systems. The operations in 
the finite-field include multiplication, squaring, addition, 
subtraction and inversion. Addition and subtraction are 
implemented simply by using XOR addition of the two 
m-bit operands [8]. The field squaring operation over 
GF(2m) can be implemented based on the approach 
presented by Rodríguez-Henríquez et al. [6]. To calculate 
the field inversion, polynomial greatest common divisor 
(GCD) and inverse computation [9] are used. Among 
these arithmetic operations, multiplication is the most 
important finite field arithmetic operation [11] because of 
its time consuming and large hardware requirement.  

Two elements, a(x) and b(x), in GF(2m) can be 
expressed as: 

 

 
1

0 1 1
1

0 1 1

( ) ...

( ) ...

-
-

-
-

= + + +

= + + +

m
m

m
m

a x a a x a x

b x b b x b x
       (2) 

 
The product c(x) can be computed as follows:                                       
 

 1

0

( ) ( ) ( ) mod ( )

( ) ( ) mod ( )
-

=

=

æ ö
= ç ÷
è ø
å
m

i
i

i

c x a x b x f x

c x b a x x f x        (3) 

 
1

1 1 0where ( ) ...-
-= + + + +m m

mf x x f x f x f  

Two popular field multiplication approaches to 
implement GF multiplication are digit-serial 
multiplication [8] and bit-serial multiplication [10]. The 
former is used with the goal of reducing latency in terms 
of the number of required clock cycles for one field 
multiplication operation. However, this approach requires 
a lot of hardware. Consequently, it is not suitable for 
resource-constrained systems. In order to reduce 
hardware complexity, bit-serial multiplication was 
introduced. In this approach, the operand b(x) is 
processed from its least significant bit (LSB), and one bit 
at each cycle is considered. The product is the modulo of 

the sum 
1

0
( )

-

=
å
m

i
i

i
b a x x and the irreducible polynomial f(x). 

 
2. ECC Point Multiplication Algorithm 

 
There are several different algorithms for performing 

elliptic curve point multiplication [4, 12]. The three most 
used algorithms are the following: double and add; 
nonadjacent form (NAF) addition-subtraction chain; and 
Montgomery ladder product [1]. Among these algorithms, 
the Montgomery ladder method for elliptic curve scalar 
point multiplication is the most popular. It can be used 
not only in affine coordinates but also in projective 
coordinates. Given a point P on elliptic curve E, and an 
m-bit scalar k = k020 + k121 +…+ km-12m-1, the scalar 
product kP is defined by 0P = 0, 1P = P, 2P = P + P, and 
so on.  

Algorithm 1, a Lopez-Dahab (LD) algorithm, 
computes scalar point multiplication kP from point P(xP, 
yP), which is on the curve. The neutral element is the 
point at infinity, and the doubling and adding operations 
are the corresponding curve operations. In the case of 
curve y2 + xy = x3 + ax2 + b over GF(2m), the following 



120 TUY TAN NGUYEN et al : EFFICIENT ALGORITHM AND ARCHITECTURE FOR ELLIPTIC CURVE CRYPTOGRAPHIC … 

 

property holds true during the execution of Algorithm 1 
[3, 4]:  

A(xA, yA) and B(xB, yB) are two different points on the 
curve. The x-coordinates A + B, xA+B and xA+A, are related 
by the following formulas [1]. 

 
 xA+B = xP + xB(xA + xB)-1 + (xB(xA + xB)-1)2     (4) 
 xA+A

 = xA
2 + b/xA

2          (5)
  

 

 
ECC can be implemented using either affine 

coordinate or projective coordinate. However, the 
number of field inversions can be reduced in projective 
coordinate. Therefore, this coordinate is widely used 
such as in [1], [3, 4] and [8]. Assuming that standard 
projective coordinates are used, xA and xB can be 
expressed by using the forms xA = XA/ZA, xB = XB/ZB. The 
corresponding formulas for ECC point addition and point 
doubling operation in projective coordinate can be found 
in [1]: 

 
 ZA+B = (XAZB + XBZA)2            (6) 
 XA+B = xPZA+B + XAXBZAZB            (7) 

 ZA+A = XA
2ZA

2                (8) 
 XA+A = XA

4 + bZA
4       

 
          (9)     

 
Left-to-right scalar point multiplication or a binary 

algorithm was presented by Li et al. [13]. Doubling and 
addition can be classified into three types: addition, 
doubling after addition, and doubling after doubling. 
Using this algorithm, the scalar k is represented in binary. 
The algorithm iterates through each bit of k. If the 
particular bit of k is ‘1’, then a point addition is also 

performed. The run-time of the algorithm depends on the 
Hamming weight of k.  

III. MODIFIED LOPEZ-DAHAB AND LEFT-TO-
RIGHT ALGORITHM 

In this section, we propose a novel modified LD and a 
left-to-right algorithm to perform the ECC point 
multiplication, as shown in Algorithm 3. There are four 
main steps. The first one is converting point P from 
affine coordinate to projective coordinate. Two important 
steps are performing the ECC operation as projective 
coordinate and the modification step to get the correct 
result, compared with the original LD algorithm. The 
final step is converting from projective coordinate to 
affine coordinate and returning the result point, Q. 

The proposed modified LD and the left-to-right 
algorithm show the advantages to computing ECC point 
multiplication by reducing the number of addition 
operations. Step 1 of the proposed algorithm shows the 
conversion from affine coordinate to projective 
coordinate. Initially, the assignments X2 = xP and Z2 = ‘1’ 
are performed. The initial values of X1 and Z1 depend on 
the value of the LSB of the key k0. If k0 = ‘1’, X1 and Z1 

are assigned to xP and ‘1’, respectively. Otherwise, both 
X1 and Z1 are assigned to ‘0’. Based on the value of the 
key bit ki, either the ECC addition or ECC doubling in 
the projective will be performed. The advantage of this 
assignment strategy is reducing the number of redundant 
point addition operations in case the value of the key bit 
ki is ‘0’. Therefore, the time required for point 
multiplication is reduced significantly.     

As can be seen from step 2 of the algorithm, whenever 
the key bit is equal to ‘0’, the algorithm only executes the 
point doubling operation, which consists of four field 
squaring operations (S1 = X2

2, S2
 = S1

2, S3 = Z2
2 and S4

 = 
S3

2), one field addition (X2 = S2 + S4) and one field 
multiplication (Z2 = S1S3). Otherwise, the point addition 
operation, which requires four field multiplication 
operations (T1 = X1Z2, T2 = X2Z1, T3 = xPZ1 and T4 = T1T2), 
two field addition operations (T1 + T2 and T3 + T4), and 
one field squaring operation ((T1 + T2)2), are calculated 
after finishing the point doubling. After finishing all 
iterations, there is a difference between the value for X1 
of proposed algorithm and the traditional value obtained 
from the LD algorithm. Therefore, a modification 

Algorithm 1. LD scalar point multiplication [1] 
Input: k = (km-1…k1k0), P(xP, yP) 
Output: Q = kP 
1. A = 0; B = P; 
2. for i = 1 to i = m do 

 if( km-1 = 0) 
   B = A + B;  
   A = 2A; 
 else 
  A = A + B; 
  B = 2B; 
 end if 

 end for 
3. Return Q= A; 

 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 121 

 

operation is required to return the same value with the 
result obtained from the traditional projective coordinate 
version of LD scalar point multiplication.  

Because the initial values of point (X1, Z1) and (X2, Z2) 
of proposed algorithm are different from that in original 
LD algorithm, there is a constant gap of 2P between the 
result of our algorithm and the original LD one. A value 
of (X3, Z3) = 2P is assigned and added to the final result 
of step 2 of proposed algorithm to get the same result 
with original LD algorithm. The conversion from 
projective coordinate to affine coordinate follows the 
modification steps, resulting in the value of point Q. 

Compared with conventional LD scalar point 
multiplication, depending on the number of ‘0’ bits and 
‘1’ bits in the key, the proposed algorithm can 
significantly reduce the number of point addition 
operations. Assume the number of ‘0’ bits in a key with a 
length of m bits is n, the number of point addition 
operations in projective coordinates can be reduced by n. 
Explained another way, the proposed method can reduce 
the number of field calculations, in which field 
multiplication requires a large number of clock cycles. 
Therefore, the proposed algorithm can appreciably 
reduce latency, as well as hardware requirements, to 
perform the whole ECC point multiplication.  

Table 1 shows the number of field multiplication and 
field squaring calculations with the conventional LD 
algorithm and the proposed modified LD algorithm. 
Assume that there are n ‘0’ bits in the key k. To perform 
ECC point multiplication, the traditional algorithm, such 
as that in Deschamps et al. [14], requires 6m – 6 and 7m 
– 7 field multiplications and field squarings, respectively. 
In the proposed algorithm, when the number of ‘0’ bits in 
the key increases by one, the number of field 
multiplications is reduced by four, and the number of 

field squarings is reduced by one. Therefore, the 
proposed algorithm can reduce the number of field 
calculations, resulting in reduced hardware complexity 
and latency. Generally, with n ‘0’ bits in the key, the 

Algorithm 2. Left-to-right Algorithm [13] 
Input: k = (km - 1…k1k0), P(xP, yP) 
Output: Q = kP 
1. =∞ 
2. for i = m - 1 0 do 
  2.1	 = 2        
  2.2	if (i = 1)  	 	 	 	  =  +     
3. Return (Q) 

 
 

Algorithm 3. Modified LD and Left-to-Right algorithm 
Input: k = (km-1…k1k0), P(xP, yP) 
Output: Q = kP 
1. From affine coordinate to projective coordinate: 

X2 = xP, Z2 = 1 
X3 = xP

4 + b, Z3 = xP
2

 
if (k0 = 1)  
   X1 = xP, Z1 = 1 
else  
   X1 = 0, Z1 = 0 
end if 

2. Calculate in projective coordinate:  
2.1 for i = 1 to i = m – 1 do 
   S1 = X2

2 
   S2 = S1

2 
   S3 = Z2

2 
   S4 = S3

2  
   X2 = S2 + S4 
   Z2 = M1(S1, S3) 
2.2 if(ki = 1) 

     T1 = M2(X1, Z2) 
     T2 = M3(X2, Z1) 
     Z1 = (T1 + T2)2  
     T3 = M4(xp, Z1) 
     T4 = M5(T1, T2) 
     X1 = T3 + T4 

   end if 
 end for 

3. Adjust the result: 
  T1 = M2(X3, Z2) 
  T2 = M3(X2, Z3) 
  Z1 = (T1 + T2)2  
  T3 = M4(xp, Z3) 
  T4 = M5(T1, T2) 
  X1 = T3 + T4; 
4. Convert from projective to affine coordinate:   
  if (Z2 = 0)  
    X1 = xP 
    Z1 = xP + yP 
  else 
    X1  = X1/Z1 
    X2  = X2/Z2 
    T2 = M2(X1 + xP, X2 + xP) 
    T3 = M3(X1 + xP, xP

-1) 
    T4 = T2 + xP

2 + yP 
    T2 = M2(T3, T4) 
    Z1 = T2 + yP; 
  end if 
5. Return output value 

  xQ = X1, yQ = Z1 
 



122 TUY TAN NGUYEN et al : EFFICIENT ALGORITHM AND ARCHITECTURE FOR ELLIPTIC CURVE CRYPTOGRAPHIC … 

 

proposed algorithm can reduce calculations by 
4

6 6-
n

m
 

field multiplications and
7 7-

n
m

field squarings, 

compared to the number of field multiplications and field 
squarings by Mahdizadeh and Masoumi [8]. 

IV. PROPOSED ECC POINT MULTIPLICATION 

ARCHITECTURE 

For the design of the ECC point multiplication 
architecture, we considered two parts. The first one 
involves calculations for converting between affine 
coordinate and projective coordinate; the other involves 
calculations in the projective coordinate system. Fig. 2 
shows the proposed ECC processor architecture, in 
which the bit-serial multiplier in Fig. 3 is used. 

To balance system latency and hardware cost, the 
number of computation units is selected in a way that 
allows computing the field operations simultaneously. In 
the proposed architecture, we use five field multipliers to 
perform the main loop. Step 2.1 of the proposed LD 
algorithm is the point doubling operation in projective 
coordinates. In the proposed architecture, two squaring 
operations, S1 = X2

2 and S3
 = Z2

2, are performed in 
parallel by using squarer 1 and squarer 3. After that, S2 = 
S1

2 and S4
 = S3

2 are also accomplished at the same time 
using squarer 2 and squarer 4. The results from squarer 1 
and squarer 3 are fed to the multiplier 5 to calculate the 
multiplication Z2 = S1S3, while the results from squarer 2 
and squarer 4 are driven to the 163-bit XOR gate array to 
obtain X2. After this step, the new value of X2 and Z2 are 
driven out. As mentioned, the most important module in 
the design of ECC point multiplication is the field 
multiplier. The number of clock cycles to calculate the 
field multiplication using the bit-serial approach is larger 
than the number of clock cycles using the digit-serial one. 
However, bit-serial multiplication requires less hardware 
than digit-serial multiplication. We use bit-serial 
multiplication and control the field operations so that the 
hardware cost and latency remain balanced. As shown in 
Fig. 2, multiplier 1 and multiplier 2 perform the 
calculations T1 = X1Z2 and T2 = X2Z1. The operations of 
multiplier 1 and multiplier 2 are accomplished 
simultaneously. After the signal m_done1 and m_done2 

Table 1. Comparison for required field multiplication and field 
squaring to calculate the ECC point multiplication 

Multiplication Squaring No. of 
“0” bits in the 

key Proposed [8] Proposed [8] 
1 6m - 10 6m - 6 7m – 8 7m – 7 
2 6m – 14 6m - 6 7m – 9 7m – 7 
… … … … … 
n 6m – 6 – 4n   6m - 6 7m – 7 – n 7m – 7 
… … … … … 
m 2m –36 6m - 6 6m - 6 7m – 7 

 
 

 

 

Fig. 2. Proposed architecture for ECC point multiplication. 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 123 

 

are enabled, multiplier 3 and multiplier 4 start 
performing the calculations T3 = xPZ1 and T4 = T1T2 in 
parallel. In this way, the delay of the proposed algorithm 
is reduced twice each iteration. The outputs from 
multiplier 3 and multiplier 4 are put into the 163-bit 
XOR gate, where output value is either sent to the MUX 
or squarer 5 to get the new value of X1 and Z1. After 
completing all iterations, the modification operation is 
executed. The strategy in the design of the modification 
is for the hardware cost to be reduced as much as 
possible. Hence, we reuse the multipliers in the main 
loop of the algorithm to execute part 3 of the proposed 
algorithm. The conversion from projective coordinate to 
affine coordinate follows the modification step.   

V. RESULTS AND COMPARISON 

In this section, we compare the performance of 
different hardware implementations for point 
multiplication, which is the main operation for ECC. We 
used Verilog HDL to synthesize our design. Table 2 
shows the comparison between bit-serial multiplication 
and digit-serial multiplication using a Xilinx Virtex-5 
FPGA. Multiplication using bit-serial multiplication 
requires 566 flip-flops (FFs) and look-up tables (LUTs), 
while the digit-serial approach, depending on digit size, 
requires more hardware than the bit-serial approach. It is 
certain that when the digit size increases, the number of 
required LUTs to perform the field multiplication 
operation increases rapidly. From Table 2, the number of 

LUTs based on a digit size equal to 8 is about twice as 
many as when the digit size is 4. 

Table 3 shows the hardware complexity and efficiency 
comparison for the proposed architecture using the 
modified LD, the left-to-right algorithm, and its 
predecessors. The hardware cost can be defined as the 
number of LUTs and slices.  

To evaluate the efficiency of the design, we used the same 
parameters defined by Mahdizadeh and Masoumi [8]. 

 

 
( )
( )

=
Throughput MbpsEfficiency

Area Slices
  

 
where 

 

 =
Working frequency x Number of bitsThroughput

Number of cycles
 

 
The algorithmic efficiency shown in the last row of 

Table 3 is defined as throughput divided by area. 
However, the previous designs [1, 8] did not show the 
slice count. Therefore, we used throughput divided by the 
number of LUTs to calculate the efficiency.  

As can be seen from Table 3, to perform point 

 

Fig. 3. Bit-serial multiplier in GF(2m) [14]. 
 

Table 2. Performance comparison of bit-serial and digit-serial 
multiplications over GF(2163) in a Virtex-5 FPGA 

Digit-serial [1] 
 Bit-serial 

digit size=4 digit size=8 
FFs 566 497 496 

LUTs 566 669 1,001 
# of  

clock cycles 163 41 21 

Time  
(ns) 82 73 56 

AreaxTime 
(A x T) 46.4 48.8 56.1 

 
Table 3. Performance comparison of ECC processors in 
FPGAs 

 Proposed [1] [8] 
Device Virtex-7 Virtex-5 Virtex-5 Virtex-4 

Mult. operation Bit-serial Bit-serial Bit-serial Digit-serial 
Slices 4,665 4,815 - 14,203 
LUTs 3,806 4,807 5,100 26,557 

Freq. (MHz) 800 550 550 263 
Throughput 

(Mbps) 2.51 1.72 1.63 12.5 

# of clock cycles 52,012 52,012 54,943 3,404 
Time (µs) 65.0 94.6 98.1 11.6 
Efficiency 657 358 313 471 
 

 



124 TUY TAN NGUYEN et al : EFFICIENT ALGORITHM AND ARCHITECTURE FOR ELLIPTIC CURVE CRYPTOGRAPHIC … 

 

multiplication, the implementation of the proposed 
architecture on Virtex-5 has less hardware complexity 
and lower number of clock cycles than the architecture of 
Sutter et al. [1] using the same bit-serial multiplication 
approach (digit size = 1). The efficiency of our work 
shows 14% higher than Sutter et al. [1]. Also, we have 
implemented the proposed architecture using Xilinx 
Virtex-7 FPGA. The proposed architecture using Virtex-7 
requires only 3,806 LUTs, which is 26% less hardware 
complexity than the architecture of Sutter et al. [1] using 
the same bit-serial multiplication approach (digit size = 
1). Noticeably, the proposed architecture uses about one-
seventh of the hardware resources, compared with the 
architecture of Mahdizadeh and Masoumi [8].  

The VLSI implementation results of the proposed 
architecture using TSMC 65-nm CMOS standard 
technology is shown in Table 4. The proposed 
architecture is modeled in the Verilog HDL and 
simulated to verify its functionality. After complete 
verification of the design functionality, it is then 
synthesized using appropriate time and area constraints. 
Synthesis step is carried out using the SYNOPSYS 
design tool and 65-nm CMOS technology. The estimated 
total number of NAND gates equivalent (GE) is 12,102 
from the synthesized results, and a maximum clock 
frequency is 800 MHz. However, we use a clock 
frequency of 1,130 KHz in order to compare with other 
works [15-17]. As can be seen, the proposed architecture 
uses a similar number of NAND gates compared to other 
works. However, the proposed architecture requires only 
52,012 clock cycles, which is a half, a quarter, and one-
fifth of that in [15-17], respectively, to finish one point 
multiplication. Furthermore, at a clock frequency of 
1,130 KHz used in Lee et al. [17], the proposed 
architecture finishes a point multiplication after 46 ms.  

VI. CONCLUSION 

This paper presented a novel efficient algorithm and 
architecture to compute ECC point multiplication. The 
result shows that the proposed architecture outperforms 
the existing architectures in terms of efficiency. 
Furthermore, to perform ECC point multiplication, our 
work incurs a lower hardware cost than the others. 
Therefore, the proposed algorithm and architecture is 
suitable for applications that must strictly consider 
hardware cost as well as system efficiency.  

ACKNOWLEDGMENTS 

This research was supported by Basic Science 
Research Program through the NRF funded by the 
Ministry of Science, ICT and Future Planning 
(2013R1A2A2A01068628). 

REFERENCES 

[1] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, 
“Efficient Elliptic Curve Point Multiplication using 
Digit-Serial Binary Field Operations,” IEEE Trans. 
on Industrial Electronics, vol. 60, no.1, pp. 217-
225, Jan. 2013. 

[2] N. Koblitz, A. Menezes, and S. Vanstone, “The state of 
elliptic curve cryptography,” Des. Codes Cryptography, 
vol. 19, no. 2–3, pp. 173–193, Mar. 2000. 

[3] R. Hankerson, A. Menezes, and S. Vanstone, Guide 
to Elliptic Curve Cryptography. New York: 
Springer-Verlag, 2004. 

[4] J.-P. Deschamps, J. L. Imaña, and G. D. Sutter, 
Hardware Implementation of Finite-Field Arithmetic. 
New York: McGraw-Hill, 2009, ser. Electronic 
Engineering Series. 

[5] W. N. Chelton and M. Benaissa, “Fast elliptic 
curve cryptography on FPGA,” IEEE Trans. on 
Very Large Scale Integrated (VLSI) Systems, vol. 
16, no. 2, pp. 198-205, Feb. 2008. 

[6] F. Rodríguez-Henríquez, N. A. Saqib, and A. Díaz-
Pérez, “A fast parallel implementation of elliptic curve 
point multiplication over GF(2m),” Micro- process. 
Microsyst., vol. 28, no. 5–6, pp. 329–339, Aug. 2004, 
Special issue on FPGAs: Applications and Designs. 

[7] S. M. Shohdy, A. B. El-Sisi, and N. Ismail, “FPGA 

Table 4. Gate count and delay comparison for the proposed 
architecture and the others in VLSI technologies  

 Proposed [15] [16] [17] 
Tech (nm) 65 65 130 130 

Mult. operation Bit-serial Bit-serial Bit-serial Bit-serial 
# of clock 

cycles 52,012 106,700 219,148 275,816 

Area (GE*) 12,102 11,571 11,720 12,506 
Freq. 
(KHz)  1,130 106 400 1,130 

Time (ms) 46 1,006.6 547.87 244.08 

*GE: gate equivalent (NAND gate) 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.1, FEBRUARY, 2016 125 

 

implementation of elliptic curve point multipli- 
cation over GF(2191),” Proc. 3rd Int. Conf. 
Workshops Adv. ISA, Berlin, Heidelberg, Germany, 
pp. 619–634, Jun. 2009.  

[8] H. Mahdizadeh and M. Masoumi, “Novel 
Architecture for Efficient FPGA Implementation of 
Elliptic Curve Cryptographic Processor Over 
GF(2163),” IEEE Trans. on Very Large Scale 
Integration (VLSI) Systems, vol. 21, no. 12, pp. 
2330-2333, Dec. 2013. 

[9] J.-C. Bajard, L. Imbert, and C. Nègre, “Arithmetic 
Operations in Finite Fields of Medium Prime 
Characteristic Using the Lagrange Representation,” 
IEEE Trans. on Computer, vol. 55, no. 9, pp. 1167-
1177, Sep. 2006. 

[10] A. Hariri and A. Reyhani-Masoleh, “Bit-Serial and 
Bit-Parallel Montgomery Multiplication and 
Squaring over GF(2m),” IEEE Trans. on Computer, 
vol. 58, no. 10, pp. 1332-1345, Oct. 2009. 

[11] C.W. Chiou, C.-Y. Lee, J.-M. Lin, T.-W. Hou, C.-
C. Chang, “Concurrent error detection and 
correction in dual basis multiplier over GF(2m),” 
IET Circuits, Devices & Systems, vol. 3, no. 1, pp. 
22-40, Feb. 2009. 

[12] G. Meurice de Dormale and J.-J. Quisquater, 
“High-speed hardware implementations of elliptic 
curve cryptography: A survey,” J. Syst. Archit., vol. 
53, no. 2–3, pp. 72–84, Feb./Mar. 2007. 

[13] H. Li, K. Wu, G. Xu, H. Yuan and P. Luo, “Simple 
Power Analysis Attacks Using Chosen Message against 
ECC Hardware Implementations,” IEEE World 
Congress on Internet Security, pp. 68-72, Feb. 2011. 

[14] J. P. Deschamps, J. L. Imaña, and G. D. Sutter,, 
“Hardware Implementation of Finite-Field 
Arithmetic” McGrawHill, ISBN 978-0-0715-4581-
5, Mar. 2009. 

[15] R. Azarderakhsh, K. U. Järvinen, and M. M.-
Kermani, “Efficient Algorithm and Architecture for 
Elliptic Curve Cryptography for Extremely 
Constrained Secure Application,” IEEE Trans. on 
Circuits and Systems-I, vol. 64, no. 4, pp. 1144-
1155, Apr. 2014. 

[16] U. Kocabas, J. Fan, and I. Verbauwhede, 
“Implementation of binary Edwards curves for 
very-constrained devices,” Proc. 21st Int. Conf. 
Application-Specific Systems Architectures and 
Processors (ASAP2010), pp. 185–191, Jul. 2010. 

[17] Y. K. Lee, K. Sakiyama, L. Batina, and I. 
Verbauwhede, “Elliptic curve-based security 
processor for RFID,” IEEE Trans. on Computer, 
vol.57, no. 11, pp. 1514–1527, Sep. 2008. 

 

Tuy Nguyen Tan received a BSc in 
Electronics and Telecommunications 
in 2009 from Danang University of 
Technology, Danang City, Vietnam. 
From 2008, he was a member of 
Silicon Design Solutions (eSilicon), 
Danang branch, where he joined the 

internship program, and then worked as a circuit design 
engineer. He was responsible for designing the read and 
write assistant circuit for SRAM. From 2010 to 2013, he 
worked as a Technical Supervisor at GTel Mobile JSC, a 
member of the VimpelCom Group, Russia. He is currently 
working toward an MSc at Inha University, Korea. His 
interests include not only digital VLSI circuits and systems 
design for communications, such as cryptography systems, 
but also their efficient hardware implementation. 

 
Hanho Lee received a PhD and MSc, 
both in Electrical & Computer 
Engineering, from the University of 
Minnesota, Minneapolis, in 2000 and 
1996, respectively. In 1999, he was a 
Member of Technical Staff-1 at 
Lucent Technologies, Bell Labs, 

Holmdel, New Jersey. From April 2000 to August 2002, 
he was a Member of the Technical Staff at Lucent 
Technologies (Bell Labs Innovations), Allentown. From 
August 2002 to August 2004, he was an Assistant 
Professor in the Department of Electrical and Computer 
Engineering, University of Connecticut, USA. Since 
August 2004, he has been with the Department of 
Information and Communication Engineering, Inha 
University, where he is currently a Professor. He was a 
visiting researcher at the Electronics and 
Telecommunications Research Institute (ETRI), Korea, 
in 2005. From August 2010 to August 2011, he was a 
visiting scholar at Bell Labs, Alcatel-Lucent, Murray Hill, 
New Jersey, USA. His research interests include VLSI 
architecture design for digital signal processing, forward 
error correction architectures, cryptographic systems, and 
communications. 


