DOI QR코드

DOI QR Code

Position estimation method based on the optical displacement sensor for an autonomous hull cleaning robot

선체 청소로봇 자동화를 위한 광 변위센서 기반의 위치추정 방법

  • Kang, Hoon (Ultimate Manufacturing Technology Group, Korea Institute of Industrial Technology) ;
  • Ham, Youn-jae (Dong-Hyun Systech co.,LTD.) ;
  • Oh, Jin-seok (Division of Marin Engineering, Korea Maritime and Ocean University)
  • Received : 2015.11.12
  • Accepted : 2015.12.17
  • Published : 2016.02.29

Abstract

This paper presents the new position estimation method which contains the optical displacement sensor and the dead reckoning based position estimation algorithm for automation of hull cleaning robot. To evaluate feasibility of the proposed position estimation method on the hull cleaning robot, it was applied on the small scale robot model which has an identical drive method with the hull cleaning robot and then a set of the position estimation experiments were performed. The experimental results of the position estimation demonstrate that the estimated results with the optical displacement sensors is more accurate than used rotary encoder method. In addition, it continuously calculated the robot position quite close to the real robot driving path. In a follow-up study, the proposed position estimation method will be complemented and exploited on the actual hull cleaning robot by adding additional sensor modules that correct measurement errors.

본 논문에서는 선체 청소로봇의 자동화를 위한 새로운 위치추정 방법을 제안하였으며, 제안한 위치추정 방법을 실제 선체 청소로봇에 적용 가능성을 평가하기 위해 동일한 주행방법을 가지는 소형로봇에 적용하여 위치추정 실험을 수행하였다. 위치추정 실험을 통해 광 변위센서를 사용한 위치추정 방법이 회전 엔코더를 사용한 방법보다 더 정확하게 위치를 추정하는 것을 확인하였으며, 더불어 제안한 위치추정 방법을 통해 로봇 주행방향 또한 기존의 회전 엔코더 방식보다 정확하게 계산되는 것을 확인하였다. 이후의 연구에서 제안한 위치추정 방법에 오차보정을 위한 센서를 추가하여 위치추정 정확도를 보완하고, 이를 실제 선체 청소로봇에 적용하여 사용할 계획이다.

Keywords

References

  1. M. Narewski, "HISMAR-Underwater hull inspection and cleaning system as a tool for ship propulsion system performance increase," Journal of POLISH CIMAC, vol. 4, no. 2, pp. 227-234, 2009. 04
  2. N. Tunawattana, R. Norman, and A. P. Roskilly, "Design of an underwater positioning sensor for crawling ship hull maintenance robots," Proceedings-Institution of Mechanical Engineers(IMechE), Part M: Journal of Engineering for the Maritime Environment, vol. 224, no. 2, pp. 115-126, 2010. 04 https://doi.org/10.1243/14750902JEME180
  3. H. Kang, and J. S. Oh, "Development of a drive control system of a hull cleaning robot reflecting operator's convenience," Journal of the Korean Society of Marine Engineering, vol. 37, no, 4, pp. 391-398, 2013. 05 https://doi.org/10.5916/jkosme.2013.37.4.391
  4. H. Choset, "Coverage for robotics-A survey of recent results," Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113-126, 2001. 06 https://doi.org/10.1023/A:1016639210559
  5. A. Bonarini, M. Matteucci and M. Restelli, "A kinematicindependent dead-reckoning sensor for indoor mobile robotics," IEEE RSJ International Conference on Intelligent Robots and Systems, Sendai(Japan), vol. 4, no.1, pp. 3750-3755, 2004. 09
  6. J. Palacin, I. Valganon and R. Pernia, "The optical mouse for indoor mobile robot odometry measurement," Sensors and Actuators-A Physical, vol. 126, no. 1, pp. 141-147, 2006. 09 https://doi.org/10.1016/j.sna.2005.09.015
  7. A. Mandow, J. L. Martinez, and J. L. Blanco, "Experimental kinematics for wheeled skid-steer mobile robot," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1222-1227, San Diego(USA), 2007. 08
  8. K. Kozlowski, and D. Pazderski, "Modeling and control of a 4-wheel skid steering mobile robot," International Journal of Applied Mathematics and Computer Science, vol. 14, no. 4, pp. 477-496, 2004. 04
  9. D. Sekimori, and F. Miyazaki, "Precise dead-reckoning for mobile robots using multiple optical mouse sensors," Proceedings of the International Conference on Informatics in Control Automation and Robotics, vol. 2, no. 2, pp. 48-54, 2005. 09
  10. U. Minoni, and A. Signorini, "Low-cost motion sensors: an experimental characterization," Sensors and Actuators-A Physical, vol. 128, no. 2, pp. 402-408, 2006. 01 https://doi.org/10.1016/j.sna.2006.01.034
  11. N. Tunawattana, and A. P. Roskilly, "Investigation into the effect of illumination and acceleration on optical mouse sensors as contact-free 2D measurement devices," Sensors and Actuators-A Physical, vol. 149, no. 1, pp. 87-92, 2009. 10 https://doi.org/10.1016/j.sna.2008.10.016
  12. T. W. Ng, "The optical mouse sensor as a two-dimensional displacement sensor," Sensors and Actuators-A Physical, vol. 107, no. 1, pp. 21-25, 2003. 07 https://doi.org/10.1016/S0924-4247(03)00256-5
  13. H. Kang, J. S. Oh, H. S. Lee, S. Y. Jung, and J. Y. Kim, "Calibration of the contact-free optical displacement sensor for accurate 2-dimensional position measurement," 2013 Proceedings of the Korean Society of Marine Engineering, pp. 376, 2013. 10
  14. S. H. Park, and S. Hashimoto, "An intelligent localization algorithm using read time of RFID system," Advanced Engineering Informatics, Vol. 24, No. 4, pp. 490-497, 2010. 05 https://doi.org/10.1016/j.aei.2010.05.001
  15. J. Palacin, I. Valganon, and R. Pernia, "The optical mouse for indoor mobile robot odometry measurement," Sensors and Actuators-A Physical, vol. 126, no. 1, pp. 141-147, 2006. 09 https://doi.org/10.1016/j.sna.2005.09.015

Cited by

  1. 이중 주차된 차량을 이동하기 위한 로봇에 관한 연구 vol.23, pp.2, 2020, https://doi.org/10.21289/ksic.2020.23.2.233
  2. An Optimal Footprint Based Coverage Planning for Hydro Blasting Robots vol.21, pp.4, 2016, https://doi.org/10.3390/s21041194