DOI QR코드

DOI QR Code

Hypoxia and Characteristics of Nutrient Distribution at the Bottom Water of Cheonsu Bay Due to the Discharge of Eutrophicated Artificial Lake Water

간척지 내 부영양화된 호수 수괴의 간헐적 유출로 인한 천수만 저층수의 Hypoxia 발생과 영양염 분포 특성

  • Lee, Dong-Kwan (Department of Oceanograhpy and Ocean Environmental Sciences, Chungnam National University) ;
  • Kim, Ki-Hyun (Department of Oceanograhpy and Ocean Environmental Sciences, Chungnam National University) ;
  • Lee, Jae-Sung (Korea Institute of Ocean Science & Technology)
  • 이동관 (충남대학교 해양환경과학과) ;
  • 김기현 (충남대학교 해양환경과학과) ;
  • 이재성 (한국해양과학기술원)
  • Received : 2016.10.27
  • Accepted : 2016.12.28
  • Published : 2016.12.31

Abstract

In summer 2010, we measured the concentration of dissolved oxygen (DO) and nutrients in the water collected at the bottom of Cheonsu Bay, off the west coast of Korea. We also measured nutrient fluxes across the sediment-water interface by deploying a fully-automated benthic lander, which collected time-series water samples inside a benthic chamber. We confirmed on-going hypoxia in the northern parts of the bay where polluted lake water was discharged. DO content in the water at the bottom was 2 mg/l, compared to 5 mg/l at the mouth of the bay in the south. Nutrient concentrations showed a trend that was opposite to that of DO. The variation of N/P ratios implies phosphate desorption and a release of nutrients caused by hypoxia. The organic carbon oxidation rate and oxygen consumption rate in the northern parts of the bay were about twice as fast as those at the mouth of the bay. Benthic fluxes of nutrients in the northern part of the bay were 4 to 6 times higher than those at the mouth. Our results imply that it is important to understand the role of hypoxia events to make an accurate estimation of material fluxes across the sediment-water interface.

본 연구에서는 2010년 여름에 천수만에서 저층해수를 채집하여 용존산소와 영양염 농도를 측정하였다. 또한 benthic chamber내의 해수시료를 시계열로 채집하는 자동화된 Benthic Lander를 설치하여 해수-퇴적물간 영양염 플럭스를 측정하였다. 오염된 인공호수 유출수가 들어오는 천수만 북쪽에서는 저층수의 용존산소는 2 mg/l로 hypoxia의 존재 가능성이 확인되었다. 반면 남쪽 천수만 입구의 저층 용존산소는 5 mg/l이었다. 영양염은 용존산소와 반대의 분포 경향을 보였고, N/P ratio의 변화는 hypoxia에 의해 발생된 인산염의 탈착과 용출 때문으로 보인다. 만 북쪽 해역의 유기탄소 산화율과 산소소비율은 남쪽 만 입구 해역보다 약 2배 큰 값을 보였고, 영양염 benthic flux는 천수만 북쪽에서 4내지 6배 높았다. 이러한 결과는 해수-퇴적물간 물질 플럭스를 정확히 추정하기 위해서는 hypoxia의 역할에 대한 이해가 중요하다는 점을 시사해준다.

Keywords

References

  1. Bianchi, T. S., S. F. DiMarco, J. H. Cowan Jr., R. D. Hetland, P. Chapman, J. W. Day and M. A. Allison(2010), The science of hypoxia in the Northern Gulf of Mexico: A review, Sci. Total Environ, Vol. 408, pp. 1471-1484. https://doi.org/10.1016/j.scitotenv.2009.11.047
  2. Bishop, M. J., S. P. Powers, H. J. Porter and C. H. Peterson(2006), Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development, Estuar. Coast. Shelf Sci., Vol. 70, pp. 415-422. https://doi.org/10.1016/j.ecss.2006.06.031
  3. Choi, Y. H.(2004), Development of Water Quality Prediction Model in Chunsu Bay, Ph.D. Thesis, Chungnam National University, Korea. p. 7.
  4. Davidson, K., R. J. Gowen, P. Tett, E. Bresnan, P. J. Harrison, A. McKinney, S. Milligan, D. K. Mills, J. Silke and A. M. Crooks(2012), Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence?, Estuar. Coast. Shelf Sci., Vol. 115, pp. 399-413. https://doi.org/10.1016/j.ecss.2012.09.019
  5. Fleddum, A., S. G. Cheung, P. Hodgson and P. K. S. Shin(2011), Impact of hypoxia on the structure and function of benthic epifauna in Tolo Harbour, Hong Kong, Mar. Poll., Vol. 63, pp. 221-229. https://doi.org/10.1016/j.marpolbul.2011.03.019
  6. Giani, M., T. Djakovac, D. Degobbis, S. Cozzi, C. Solidoro and S. F. Umani(2012), Recent changes in the marine ecosystems of the northern Adriatic Sea, Estuar. Coast. Shelf Sci., Vol. 115, pp. 1-13. https://doi.org/10.1016/j.ecss.2012.08.023
  7. Grasshoff, K., K. Kremling and M. Ehrhardt(1999), Methods of Seawater Analysis, Wiley-VCH, Weinheim, Germany, p. 632.
  8. Gruber, N. and J. L. Sarmiento(1997), Global patterns of marine nitrogen fixation and denitrification, Global Biogeochem, Cycles, Vol. 11, No. 2, pp. 235-266. https://doi.org/10.1029/97GB00077
  9. Gutknecht, E., I. Dadou, B. LeVu, G. Cambon, J. Sudre, V. Garcon, E. Machu, T. Rixen, A. Kock, A. Flohr, A. Paulmier and G. Lavik(2013), Coupled physical/biogeochemical modeling including O-2-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela, Biogeosciences, Vol. 10, No. 6, pp. 3559-3591. https://doi.org/10.5194/bg-10-3559-2013
  10. Heo, N. W., J. Y. Lee, J. W. Choi and S. M. An(2011), Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula, J. Korean Soc. Oceanogr., Vol. 16, No. 2, pp. 81-96.
  11. Horiguchi, F., K. Nakata, N. Ito and K. Okawa(2006), Risk assessment of TBT in the Japanese short-neck clam (Ruditapes philippinarum) of Tokyo Bay using a chemical fate model, Estuar. Coast. Shelf Sci., Vol. 70, pp. 589-598. https://doi.org/10.1016/j.ecss.2006.06.012
  12. House, W. A., F. H. Denison and P. D. Armitage(1995), Comparison of the uptake of inorganic phosphorus to a suspended and stream bed-sediment, Water Res., Vol. 29, No. 3, pp. 767-779. https://doi.org/10.1016/0043-1354(94)00237-2
  13. Jung, K. Y., Y. J. Ro and B. J. Kim(2013), Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season, J. Korean Soc. Oceanogr., Vol. 18, No. 2, pp. 53-64.
  14. Jung, R. H., I. S. Seo, W. C. Lee, H. C. Kim, S. R. Park, J. B. Kim, C. W. Oh and B. M. Choi(2014), Community Structure and Health Assessment of Macrobenthic Assemblages at Spring and Summer in Cheonsu Bay, West Coast of Korea, J. Korean Soc. Oceanogr., Vol. 19, No. 4, pp. 272-286.
  15. Kang, C. K., P. J. Kim, W. C. Lee and P. Y. Lee(1999), Nutrients and phytoplankton blooms in the southern coastal waters of Korea: I. The elemental composition of C, N, and P in particulate matter in the coastal bay systems, J. Korean Soc. Oceanol., Vol. 34, No. 2, pp. 86-94.
  16. Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith and J. C. Stevenson(2005), Eutrophication of Chesapeake Bay: historical trends and ecological interactions, Mar. Ecol. Prog. Ser., Vol. 303, pp. 1-29. https://doi.org/10.3354/meps303001
  17. Kim, D. S. and S. W. Kim(2003), Mechanism of Oxygen-Deficient Water Formation in Jindong Bay, Korea. J. Oceanol. Soc. Korea., Vol. 8, No. 2, pp. 177-186.
  18. Kim, I. N. and D. H. Min(2013), Temporal variation of summertime denitrification rates in the Texas-Louisiana inner shelf region in the Gulf of Mexico: A modeling approach using the extended OMP analysis, Cont. Shelf Res., Vol. 66, pp. 49-57. https://doi.org/10.1016/j.csr.2013.07.005
  19. Kim, K. H. and J. S. Lee(2011), Hypoxia Events in Cheonsu Bay, West Coast of Korea, Triggered by Discharge of Eutrophicated Water from Artificial Lakes, Goldschmidt 2011. Euro. Assoc. Geochem. Aug. 14-19, 2011, Prague, Czech.
  20. Kim, T. I., B. H. Choi and S. W. Lee(2006), Hydrodynamics and sedimentation induced by large-scale coastal developments in the Keum River Estuary, Korea, Estuar. Coast. Shelf Sci., Vol. 68, pp. 515-528. https://doi.org/10.1016/j.ecss.2006.03.003
  21. Kodama, K., Y. Tajima, T. Shimizu, S. Ohata, H. Shiraishi and T. Horiguchi(2014), Disturbance of recruitment success of mantis shrimp in Tokyo Bay associated with effects of hypoxia on the early life history, Mar. Pollut. Bull., Vol. 85, pp. 433-438. https://doi.org/10.1016/j.marpolbul.2014.04.028
  22. Kwon, S. Y., J. H. Lee, J. M. Hong, H. B. Hwang and T. W. Lee(2013), Change in Species Composition of Shallow Water Fish at the Namdang Beach after Dike Construction in Cheonsu Bay, Korean J. Ichthyol., Vol. 25, No. 2, pp. 53-64.
  23. Lee, J. H. and H. S. Park(1998), Community structures of macrobenthos in Chonsu Bay, Korea, J. Korean Soc. Oceanol., Vol. 33, pp. 18-27.
  24. Lee, J. S., K. H. Kim, J. H. Shim, J. H. Han, Y. H. Choi and B. J. Khang(2012), Massive sedimentation of fine sediment with organic matter and enhanced benthic-pelagic coupling by an artificial dyke in semi-enclosed Chonsu Bay, Korea, Mar. Pollut. Bull., Vol. 64, pp. 153-163. https://doi.org/10.1016/j.marpolbul.2011.09.033
  25. Lee, J. S., Y. T. Kim, S. J. Hong, S. H. Kim, J. H. Han, S. S. Kim, J. H. Hyun and K. H. Shin(2011), Influence of sea squirt (Halocynthiaroretzi) aquaculture on benthicpelagic coupling in coastal water of the South Sea in Korea, Estuar. Coast. Shelf Sci., Vol. 99, pp. 10-20.
  26. Lee, P. Y., C. K. Kang, J. S. Park and J. S. Park(1994), Annual change and C:N:P ratio in particulate organic matter in Chingae Bay, Korea, J. Korea. Soc. Oceanol., Vol. 29, No. 2, pp. 107-118.
  27. Lee, Y. G., K. G. An, P. T. Ha, K. Y. Lee, J. H. Kang, S. M. Cha, K. H. Cho, Y. S. Lee, I. S. Chang, K. W. Kim and J. H. Kim(2009), Decadal and seasonal scale changes of an artificial lake environment after blocking tidal flows in the Yeongsan Estuary region, Korea, Sci. Total Environ., Vol. 407, pp. 6063-6072. https://doi.org/10.1016/j.scitotenv.2009.08.031
  28. Lim, H. S. and K. Y. Park(1998), Community Structure of the Macrobenthos in the Soft Bottom of Yongsan River Estuary, Korea 2. The Occurrence of Summer Hypoxia and Benthic Community, J. Korean Fish. Soc., Vol. 31, No. 3, pp. 343-352.
  29. Park, H. S., H. S. Lim and J. S. Hong(2000), Spatio-and temporal patterns of benthic environment and macrobenthos community on subtidal soft-bottom in Chonsu Bay, Korea, J. Korean Fish. Soc., Vol. 33, No. 3, pp. 262-271.
  30. Park, H. S., R. S. Kang and J. H. Lee(2006), Distribution Patterns of the Dominant Macrobenthos and the Benthic Environments on Subtidal Soft-bottom in Chonsu Bay, Korea, J. Korean Fish. Soc., Vol. 39, pp. 214-222.
  31. Pretterebner, K., B. Riedel, M. Zuschin and M. Stachowitsch (2011), Hermit crabs and their symbionts: Reactions to artificially induced anoxia on a sublittoral sediment bottom, J. Exp. Mar. Biol. Ecol., Vol. 411, pp. 23-33.
  32. Rabalais, N. N., E. Turner and D. Scavia(2002), Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River, BioScience, Vol. 52, No. 2, pp. 129-142. https://doi.org/10.1641/0006-3568(2002)052[0129:BSIPGO]2.0.CO;2
  33. Ro, Y. J. and Y. H. Choi(2004), Application of realtime monitoring of oceanic conditions in the coastal water for environmental management, J. Korean Soc. Oceanol., Vol. 39, No. 2, pp. 148-154.
  34. Ryu, S. O. and J. H. Chang(2005), Characteristics of Tidal Beach and Shoreline Changes in Chonsu Bay, West Coast of Korea, J. Korean Earth Sci. Soc., Vol. 26, No. 6, pp. 584-596.
  35. So, J. K., K. T. Jung and J. W. Chae(1998), Numerical Modeling of Changes in Tides and Tidal Currents Caused by Embankment at Chonsu Bay, J. Ocean Eng. Technol., Vol. 10, No. 4, pp. 151-164.
  36. Song, Y. H., M. S. Choi and Y. W. Ahn(2011), Trace metals in Chun-su Bay sediments, J. Korean Soc. Oceanogr., Vol. 16, No. 4, pp. 169-179.
  37. Van der Zee, C., N. Roevros and L. Chou(2007), Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea, Mar. Chem., Vol. 106, pp. 76-91. https://doi.org/10.1016/j.marchem.2007.01.003
  38. Woo, H. J., J. U. Choi, J. H. Ryu, S. H. Choi and S. R. Kim(2005), Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay, J. Korean Wetlands Soc., Vol. 7, No. 2, pp. 53-67.
  39. Yang, D. B. and J. S. Hong(1988), On The Biogeochemical Characteristics of Surface Sediments in Chinhae Bay in September 1983, Bull. Korean Fish. Soc., Vol. 21, No. 4, pp. 195-205.
  40. Zhang, J., T. Xiaob, D. Huangc, S. M. Liud and J. Fange(2016), Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment, J. Mar. Syst., Vol. 154, pp. 1-4. https://doi.org/10.1016/j.jmarsys.2015.10.007

Cited by

  1. 여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화 vol.24, pp.4, 2019, https://doi.org/10.7850/jkso.2019.24.4.519
  2. 회복탄력성 분석 기반 담수호 수질 평가 프레임워크 개발 vol.62, pp.5, 2020, https://doi.org/10.5389/ksae.2020.62.5.105
  3. Application of the SWAT-EFDC Linkage Model for Assessing Water Quality Management in an Estuarine Reservoir Separated by Levees vol.11, pp.9, 2016, https://doi.org/10.3390/app11093911
  4. 부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성 vol.39, pp.2, 2016, https://doi.org/10.11626/kjeb.2021.39.2.184