DOI QR코드

DOI QR Code

The Calculation of the Energy Band Gaps of Zincblende InAs1-X NX on Temperature and Composition

온도 및 조성비 변화에 따른 질화물계 화합물 반도체 InAs1-X NX의 에너지 밴드갭 계산

  • Chung, Ho-Yong ;
  • Kim, Dae-Ik (School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University)
  • 정호용 (전남대학교 의공학과) ;
  • 김대익 (전남대학교 전기전자통신컴퓨터공학부)
  • Received : 2016.10.17
  • Accepted : 2016.12.24
  • Published : 2016.12.31

Abstract

The energy band gaps and the bowing parameters of zincblende InAs1-xN are determined by using an empirical pseudopotential method(EPM) within the improved virtual crystal approximation(VCA), which includes the disorder effect. The direct-band-gap bowing parameter calculated by using the EPM is 4.1eV for InAs1-xNx ($0{\leq}x{\leq}0.05$). The dependences of the band gaps of N-dilute InAs1-xNx on the temperature and composition are calculated by modifying the band anti-crossing(BAC) model. The calculation results are consistent with experimental values, and the coupling parameter CMN of InAs1-xNx is found to be equal to 1.8 by fitting the EPM data.

본 연구에서는 무질서 효과가 고려된, 새로이 가정한 가상 결정 근사법 내의 Empirical Pseudopotential Method(EPM)를 사용하여 3원계 질화물계 화합물 반도체 InAs1-xNx의 휨 매개변수 및 에너지 밴드갭을 계산하였다. InAs1-xNx 조성비 구간($0{\leq}x{\leq}0.05$)에서 계산된 휨 매개변수는 4.1eV를 갖으며, 해당되는 에너지 밴드갭들이 급격히 감소하고 있음을 알 수 있었다. EPM에 의한 계산 결과를 온도와 조성비를 고려한 수정된 Band Anti-Crossing(BAC) 모델에 적용하여 질화물계 화합물 반도체 InAs1-xNx의 에너지 띠구조를 계산하였다. 또한 InAs1-xNx의 결합 상수 CMN=1.8 등을 결정할 수 있었으며, 계산결과는 실험치를 대체로 잘 설명할 수 있었다.

Keywords

References

  1. J. Song, J. Park, and B. Yoon, "Design and Implementation of Transformerless 40W LED Light Driver Circuitfor Ships," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 3, 2012, pp. 485-490. https://doi.org/10.13067/JKIECS.2012.7.3.485
  2. J. Kwon, H. Kim, K. Park, Y. Kim, and G. Hoang, "Thermal Characteristics of Designed Heat Sink for 13.5W COB LED Down Light," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 5, 2014, pp. 561-566. https://doi.org/10.13067/JKIECS.201.9.5.561
  3. B. Yoon, J. Song, J. Park, and H. Kwon, "Development of 1.2kW LED Light with Water-Air Circulation," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 5, 2015, pp. 615-622. https://doi.org/10.13067/JKIECS.2015.10.5.615
  4. J. Wu, W. Walukiewiczb, K. Yub, J. Ager III, S. Li, E. Haller, H. Lud, and W. Schaff, "Universal bandgap bowing in group-III nitride alloys," Solid State Commun., vol. 127, issue 6, 2003, pp. 411-414. https://doi.org/10.1016/S0038-1098(03)00457-5
  5. C. Tan, J. Zhang, X. Li, G. Liu, B. Tayo, and N. Tansu, "First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters," J. Display Technol., vol. 9, no. 4, Apr. 2013, pp. 272-279. https://doi.org/10.1109/JDT.2013.2248342
  6. M. Kesaria, S. Birindelli, A. Velichko, Q. Zhuang, A. Patane, M. Capizzi, and A. Krier, "In(AsN) mid-infrared emission enhanced by rapid thermal annealing," Infrared Physics & Technol., vol. 68, (no. ??), Jan. 2015, pp.138-142. https://doi.org/10.1016/j.infrared.2014.11.016
  7. J. Ibanez1, R. Oliva1, M. Mare, M. Schmidbauer, S. Hernandez, P. Pellegrino, D. Scurr, R. Cusco, L. Artus, M. Shafi, R. Mari, M. Henini, Q. Zhuang, A. Godenir, and A. Krier, "Structural and optical properties of dilute InAsN grown by molecular beam epitaxy," J. of Appl. Phys., vol. 108, no. 10, 2010, pp. 103504-1-8. https://doi.org/10.1063/1.3509149
  8. Q. Zhuang, A. Godenir, A. Krier, K. Lai, and S. Haywood, "Room temperature photoluminescence at $4.5{\mu}m$ from InAsN," J. of Appl. Phys., vol. 103, no. 6, 2008, pp. 063520-1-4. https://doi.org/10.1063/1.2896638
  9. B. Liou and C. Liu, "Electronic and structural properties of zincblende $Al_XIn_{1-X}N$," Optics Commun., vol. 274, no. 2, June 2007, pp. 361-365. https://doi.org/10.1016/j.optcom.2007.02.040
  10. H. Benaissa, A. Zaoui, and M. Ferhat, "First principles calculations for dilute $InAs_{1-x}N_x$ alloys," J. of Appl. Phys., vol. 102, no. 11, 2007, pp. 113712-1-5. https://doi.org/10.1063/1.2821144
  11. H. Baaziz, Z. Charifi, A. Reshak, B. Hamad, and Y. Douri, "Structural and electronic properties of $GaN_XAs_{1-X}$ alloys," App. Phys. A, vol. 106, no. 3, Mar. 2012, pp 687-696. https://doi.org/10.1007/s00339-011-6666-8
  12. C. Zhao, N. Li, T. Wei, and C. Tang, "Temperature and Composition Dependence of $GaN_XAs_{1-X}(0{\leq}x{\leq}0.05)$ before and after Annealing," Chin. Phys. Lett., vol. 28, no. 12, 2011, pp. 127801-1-4. https://doi.org/10.1088/0256-307X/28/12/127801
  13. C. Zhao, T. Wei, N. Li, S. Wang, and K. Lu, "The evolution of the band gap energy of the P-rich $GaN_XP_{1-X}(0{\leq}x{\leq}0.05)$ on composition and temperature," Physica B: Physics of Condensed Matter, vol. 427, (no. ??), Oct. 2013, pp. 58-61. https://doi.org/10.1016/j.physb.2013.06.029
  14. R. Kudrawiec, G. Sek, J. Misiewicz, L. Li, and J. Harmand, "Experimental investigation of the $C_{MN}$ matrix element in the band anticrossing model for GaAsN and GaInAsN layers," Solid State Commun., vol. 353, issue 6, Feb. 2004, pp. 353-357.
  15. S. Kuboya, M. Kuroda, R. Katayama, and K. Onabe, "Carrier-concentration dependent photoluminescence of InAsN films grown by RF-MBE," J. of Cryst. Growth, vol. 323, issue 1, May 2011, pp. 26-29. https://doi.org/10.1016/j.jcrysgro.2010.12.017
  16. H. Naoi, Y. Naoi, and S. Sakai, "MOCVD Growth of InAsN for infrared applications," Solid-State Electron., vol. 41, no. 2, 1997, pp. 319-321. https://doi.org/10.1016/S0038-1101(96)00236-5
  17. D. Shih, H. Lin, L. Sung, T. Chu, and T. Yang, "Band Gap Reduction in InAsN Alloys," Jpn. J. of Appl. Phys., vol. 42, part 1, no. 2A, Feb. 2003, pp. 375-383. https://doi.org/10.1143/JJAP.42.375
  18. M. Kuroda, A. Nishikawa, R. Katayama, and K. Onabe, "Growth and characterization of InAsN alloy films and quantum wells," J. of Cryst. Growth, vol. 278, issue 1-4, May 2005, pp. 254-258. https://doi.org/10.1016/j.jcrysgro.2005.01.075
  19. H. Chung and M. An, "Energy band structures of graded gap superlattices and quaternary compound semiconductors," Sae Mulli, vol. 32, no. 5, 1992, pp. 693-702.
  20. H. Chung and M. An, "Energy Gaps and Bowing Parameters of Zincblende $Ga_XIn_{1-X}N$, $Al_XIn_{1-X}N$, $Al_XGa_{1-X}N$ and their alloys $Al_XGa_YIn_{1-X-Y}N$," Sae Mulli, vol. 57, no. 3, 2008, pp. 205-214.
  21. W. Shan, W. Walukiewicz, J. Ager, III, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. Kurtz, "Band Anticrossing in GaInNAs Alloys," Phys. Rev. Lett., vol. 82, no. 6, 1999, pp. 1221-1224. https://doi.org/10.1103/PhysRevLett.82.1221
  22. J. Plaza, J. Castano, B. Garcia, H. Carrere, and E. bedelira, "Temperature dependence of photoluminescence and photoreflectance spectra of dilute GaAsN alloys," Appl. Phys. Lett., vol. 86, no. 12, 2005, pp. 121918-1-3. https://doi.org/10.1063/1.1891293
  23. I. Vurgaftman, J. Meyer, and L. Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. of Appl. Phys., vol. 89, no. 11, 2001, pp. 5815-5875. https://doi.org/10.1063/1.1368156
  24. A. Gueddim, R. Zerdoum, and N. Bouarissa, "Alloy composition and optoelectronic properties of dilute $GaSb_{1-X}N_X$ by pseudo-potential calculations," Physica B, vol. 389, no. 2, 2007, pp. 335-342. https://doi.org/10.1016/j.physb.2006.07.008
  25. W. Mohamed, F. Mezrag, M. Boucenna, and N. Bouarissa, "Electronic structure and related properties for quasi-binary $(GaP)_{1-X}(ZnSe)_X$ crystals," J. of Structural Chem., vol. 54, no. 6, Nov. 2013, pp. 1004-1011. https://doi.org/10.1134/S0022476613060024
  26. N. Bouarissa, "Optical and vibrational properties of quasi-binary $(GaSb)_{1-X}(InAs)_X$ crystals," Materials Lett., vol. 60, issue 24, Oct. 2006, pp. 2974-2978. https://doi.org/10.1016/j.matlet.2006.02.026