DOI QR코드

DOI QR Code

Decreasing Transmission Power with Provisioning Quality of Experience in Mobile Communication Networks

이동통신망에서 송신전력 절감 및 QoE 보장을 위한 전력관리 방안

  • Lee, Moon-Ho (Department of Multimedia Science, Chungwoon University) ;
  • Lee, Jong-Chan (Department of Computer Information Engineering, Kunsan National University,)
  • Received : 2016.07.22
  • Accepted : 2016.09.08
  • Published : 2016.12.31

Abstract

Mobile communication systems should be able to support multimedia traffics with limited transmit power due to the frequency reuse for maximizing the channel accommodation. Real-time data is very sensitive to delay, and they need to be transmitted instantly. On the other hand, non-real time data is less sensitive to delay, and their packet loss can be handled more flexibly. Therefore an adaptive resource management scheme is essentially required which enables to keep the minimal power allocated in the base station while guaranteeing the user requirements for QoE within a permissible range. Power-saving techniques are required in order to support multimedia services in the mobile networks because the power consumption increases greatly with the transmission rate increase. This paper proposes a novel scheme which enables to keep the allocated power minimal while guaranteeing the user requirements for QoE within a permissible range.

이동통신망에서는 채널 사용을 극대화하기 위하여 제한된 송신 전력으로 멀티미디어 트래픽을 지원해야 한다. 실시간 전송 기반의 데이터들은 지연에 민감하므로 이를 고려해야 하고, 비실시간성 데이터는 비교적 지연에 둔감하므로 패킷 손실에 유연하게 대처할 수 있다. 따라서 제한된 송신 전력으로 멀티미디어 트래픽을 지원하여야 하므로 하향 링크 전력을 최소로 유지하면서 QoE 제약 조건을 충족시키는 방안이 필요하다. 전송률의 증가에 따라 소비되는 전력이 크게 증대되므로 다양한 이동 멀티미디어 서비스를 지원하기 위해서는 에너지 소비 절감 기술이 요구된다. 또한 인터넷 기반의 멀티미디어 서비스는 자원 요구량, QoE 요건이 상이하므로 적응적인 전력 관리가 필수적이다. 따라서 본 논문에서는 QoE을 일정 수준으로 충족시키면서 전력 소모를 최소화하기 위한 방안을 제안한다.

Keywords

References

  1. M. Hunukumbure, T. Moulsley, and S. Vadgama, "A Dynamic Resource Allocation Algorithm as a Green Technology for 4G Advanced Networks," IEEE World Telecommunications Congress (WTC), pp. 1-5, March, 2012.
  2. H. Jung, J. Lee, "Downlink Power Allocation of the OFDMA Femtocell for Inter-cell Interference Mitigation," Journal of Korea Information and Communications Society, vol. 35, No. 8, pp. 743-751, Apr. 2010.
  3. C. Han, T. Harrold, et al., "Green radio: Radio Techniques to Enable Energy-efficient Wireless Networks," IEEE Communication Magazine, vol. 49, no. 6, pp. 46-54, March 2011.
  4. C. Yan, S. Zhang, S. Xu, and G. Y. Li, "Fundamental Trade-offs on Green Wireless Networks," IEEE Communication Magazine, vol. 49, no. 6, pp. 1-16, Jan. 2011. https://doi.org/10.1109/MCOM.2011.5783971
  5. D. Rosario, et al., "A QoE Handover Architecture for Converged Heterogeneous Wireless Networks," Wireless Networks, vol. 19, no. 8, pp. 2005-2020, Nov. 2013. https://doi.org/10.1007/s11276-013-0584-y
  6. K. Piamrat, A. Ksentini, C. Viho, and J. Bonnin, "QoE Aware Vertical Handover in Wireless Heterogeneous Networks," in Proceeding of Wireless Communications and Mobile Computing Conference, pp. 95-100, 2011.
  7. G. Gomez, and J. Lorca, "Towards a QoE-Driven Resource Control in LTE and LTE-A Networks," Journal of Computer Networks and Communications, vol. 2013, pp. 1-15, Jan. 2013.
  8. M. Alreshoodi, J. Woods, "Survey on QoE\QoS Correlation Models for Multimedia Services," International Journal of Distributed and Parallel Systems, vol.4, no.3, pp. 53-72, May 2013.
  9. D. Suh, I. Jang, and S. Pack, "QoE-enhanced Adaptation Algorithm over DASH for Multimedia Streaming," in Proceedings of International Conference on Information Networking, pp. 497-501, Feb. 2014.
  10. Y. Xu, Y. Zhou, and D. Chiu, "Analytical QoE models for bit-rate switching in dynamic adaptive streaming systems," IEEE Transactions on Mobile Computing, vol. 13, no. 12, pp. 2734-2748, Dec. 2014. https://doi.org/10.1109/TMC.2014.2307323
  11. N. Bouten, J. Famaey, S. Latre, R. Huysegems, B. Vleeschauwer, W. Leekwijck, and F. Turck, "QoE Optimization Through In-network Quality Adaptation for HTTP Adaptive Streaming," in Proceedings of International Conference and workshop on Systems and Virtualization Management, pp. 336-342, 2012.
  12. J. Lee and M. Lee, "Sub-channel Allocation Based on Multi-level Priority in OFDMA Systems," KSII Transactions on Internet and Information Systems, vol. 7, no.8, pp. 1876-1889, Aug. 2013. https://doi.org/10.3837/tiis.2013.08.008
  13. IST- WINNER II D1.1.2, WINNER II Channel Models, IST, 2007.
  14. 3GPP TR R1-050255, Evolved Universal Terrestrial Radio Access (E-UTRA); Downlink Transmission Scheme, ETSI, 2005.
  15. H. Shao, W. Jing, et al., "Joint Optimization of Quality of Experience and Power Consumption in OFDMA Multicell Networks," IEEE Communication Letters, vol. 20, no. 2, pp. 380-383, Feb. 2016. https://doi.org/10.1109/LCOMM.2015.2508924
  16. C. Xie, X. Zhang, Y. Li, and B. Han, "QoE Driven Energy Efficiency Promotion for Mobile Video Service," in Proceedings of 26th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1030-1035, Aug. 2015.

Cited by

  1. Zigbee-CoAP 기반 대기전력 절감 시스템 설계 및 구현 vol.24, pp.5, 2016, https://doi.org/10.6109/jkiice.2020.24.5.616