DOI QR코드

DOI QR Code

2~16 GHz GaN Nonuniform Distributed Power Amplifier MMIC

2~16 GHz GaN 비균일 분산 전력증폭기 MMIC

  • Bae, Kyung-Tae (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Lee, Ik-Joon (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Kang, Hyun-Seok (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Kim, Dong-Wook (Department of Radio and Information Communications Engineering, Chungnam National University)
  • 배경태 (충남대학교 전파정보통신공학과) ;
  • 이익준 (충남대학교 전파정보통신공학과) ;
  • 강현석 (충남대학교 전파정보통신공학과) ;
  • 김동욱 (충남대학교 전파정보통신공학과)
  • Received : 2016.09.19
  • Accepted : 2016.10.31
  • Published : 2016.10.30

Abstract

In this paper, a 2~16 GHz GaN wideband power amplifier MMIC s designed and fabricated using the nonuniform power amplifier design technique that utilizes drain shunt capacitors to simultaneously provide each transistor with the optimum load impedance and phase balance between input and output transmission lines. The power amplifier MMIC chip that is fabricated using the $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors occupies an area of $3.9mm{\times}3.1mm$ and shows a linear gain of larger than 12 dB and an input return loss of greater than 10 dB. Under a continuous-wave mode, it has a saturated output power of 36.2~38.5 dBm and a power-added efficiency of about 8~16 % in 2 to 16 GHz.

본 논문에서는 드레인 분기 커패시터를 사용하여 입 출력 간 동위상을 제공함과 동시에 각 트랜지스터에 최적 부하 임피던스를 제공하는 비균일 분산 전력증폭기 설계 기법을 2~16 GHz GaN 광대역 전력증폭기 MMIC 설계에 적용하고, 칩을 제작하여 결과를 평가하였다. Win Semiconductors사의 $0.25{\mu}m$ GaN HEMT 공정으로 제작된 MMIC 칩은 크기가 $3.9mm{\times}3.1mm$이며, 주파수 대역 내에서 12 dB 이상의 선형 이득 및 10 dB 이상의 입력 반사 손실을 보였다. 연속파모드 포화출력 조건에서 측정된 출력 전력은 36.2~38.5 dBm의 값을 보였고, 전력부가효율은 약 8~16 %를 나타내었다.

Keywords

References

  1. U. Schmid, H. Sledzik, P. Schuh, J. Schroth, M. Oppermann, P. Bruckner, F. van Raay, R. Quay, and M. S. Eggerbert, "Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defence AESA applications", IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 8, pp. 3043-3051, Aug. 2013. https://doi.org/10.1109/TMTT.2013.2268055
  2. J. Gassmann, P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology", IEEE MTT-S International Microw. Symp. Digest, pp. 615-618, Jun. 2007.
  3. C. Campbell, C. Lee, V. Williams, M. Kao, H. Tserng, P. Saunier, and T. Balisteri, "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology", IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2640-2647, Oct. 2009. https://doi.org/10.1109/JSSC.2009.2026824
  4. R. Santhakumar, B. Thibeault, M. Higashiwaki, S. Keller, Z. Chen, U. K. Mishra, and R. A. York, "Two-stage high-gain high-power distributed amplifier using dualgate GaN HEMTs", IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 8, pp. 2059-2063, Aug. 2011. https://doi.org/10.1109/TMTT.2011.2144996
  5. E. Ersoy, S. Chevtchenko, P. Kurpas, and W. Heinrich, "A compact GaN-MMIC non-uniform distributed power amplifier for 2 to 12 GHz", German Microwave Conf. 2014(GeMIC 2014), Mar. 2014.
  6. K. T. Bae, D. W. Kim, "2-6 GHz GaN distributed power amplifier MMIC with tapered gate-series/drainshunt capacitors", International Journal of RF and Microwave Computer-Aided Engineering, vol. 26, no. 5, pp. 456-465, Mar. 2016. https://doi.org/10.1002/mmce.20989