DOI QR코드

DOI QR Code

Characterization of Tryptamine-Producing Bacteria Isolated from Commercial Salted and Fermented Sand Lance Ammodytes personatus Sauces

시판 까나리(Ammodytes personatus) 액젓에서 분리한 tryptamine 생성균의 특성

  • Um, In-Seon (Department of Food Science and Biotechnology, Kunsan National University) ;
  • Kim, Tae-Ok (Department of Food Science and Biotechnology, Kunsan National University) ;
  • Kim, Hee-Dai (Department of Biotechnology and Biomedicine, Chungbuk Provincial College) ;
  • Park, Kwon-Sam (Department of Food Science and Biotechnology, Kunsan National University)
  • 엄인선 (군산대학교 식품생명공학과) ;
  • 김태옥 (군산대학교 식품생명공학과) ;
  • 김희대 (충북도립대학 바이오생명의약과) ;
  • 박권삼 (군산대학교 식품생명공학과)
  • Received : 2016.10.24
  • Accepted : 2016.11.30
  • Published : 2016.12.31

Abstract

We isolated seven tryptamine-producing bacteria from commercial salted and fermented sand lance (Ammodytes personatus) sauces using an L-tryptophan decarboxylating medium. These tryptamine-producing bacteria, identified using an API kit and 16S rRNA analysis, included Lysinibacillus xylanilyticus (one strain), Lysinibacillus fusiformis (four strains), and Staphylococcus epidermidis (two strains). Lysinibacillus spp. produced the highest levels of tryptamine in culture broth containing 0.5% L-tryptophan, compared with 1.0% and 2.0% preparations. After 72 h of incubation, Staphylococcus epidermidis produced the highest levels of tryptamine ($60.50{\mu}g/mL$ and $664.86{\mu}g/mL$) in culture broth containing 2.0% L-tryptophan. While Lysinibacillus spp. comprised the dominant tryptamine-producing bacteria in sand lance sauces, Staphylococcus epidermidis also showed high tryptamine-producing activity. This is the first report on the isolation and identification of tryptamine-producing bacteria in sand lance sauces.

Keywords

References

  1. Acar JF and Goldstein FW. 1991. Disk susceptibility test. In: Antibiotics in Laboratory Medicine, Lorian V, ed. Williams & Wilkins, Baltimore, U.S.A., 17-52.
  2. Biji KB, Ravishankar CN, Venkateswarlu R, Mohan CO and Gopal TK. 2016. Biogenic amines in seafood: a review. J Food Sci Technol 53, 2210-2218. http://dx.doi.org/10.1007/s13197-016-2224-x.
  3. Blackwell B. 1963. Hypertensive crisis due to monoamineoxidase inhibitors. Lancet 2, 849-850. http://dx.doi.org/10.1016/S0140-6736(63)92743-0.
  4. Canadian standards for various chemical contaminants in food. 2012. Health Canada. Canada.
  5. Cho TY, Han GH, Bahn KN, Son YW, Jang MR, Lee CH, Kim SH, Kim DB and Kim SB. 2006. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J Food Sci Technol 38, 730-737.
  6. Coorevits A, Dinsdale AE, Heyrman J, Schumann P, Van Landschoot A, Logan NA and De Vos P. 2012. Lysinibacillus macroides sp. nov., nom. rev. Int J Syst Evol Microbiol 62, 1121-1127. http://dx.doi.org/10.1099/ijs.0.027995-0.
  7. Duan YQ, He ST, Li QQ, Wang MF, Wang WY, Zhe W, Cao YH, Mo MH, Zhai YL and Li WJ. 2013. Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 51, 289-294. http://dx.doi.org/10.1007/s12275-013-2338-z.
  8. Dunbar J, Ticknor LO and Kuske CR. 2000. Assessment of microbial diversity in four southwestern Unites States soils by 16S rRNA gene terminal restriction fragment analysis. Apple Environ Microbiol 66, 2943-2950. https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  9. Fernandes-Salfuero J and Mackie IM. 1987. Preliminary survey of the contents histamine and other higher amines in some samples of Spanish canned fish. Int J Food Sci Technol 22, 409-412. http://dx.doi.org/10.1111/j.1365-2621.1987.tb00504.x.
  10. Fritz SB and Baldwin JL. 2003. In: Food allergy: Adverse Reactions to Foods and Food Additives. Pharmacologic food reactions. 395-407. 3rd ed. Metcalfe DD, Sampson Ha, Simon RA(eds). Blackwell Publishing, Malden Massachusetts, USA.
  11. Gardini F, Ozogul Y, Suzzi G, Tabanelli G and Ozogul F. 2016. Technological factors affecting biogenic amine content in foods: a review. Front Microbiol 7, 1218. http://dx.doi.org/10.3389/fmicb.2016.01218.
  12. Joostern HMLJ. 1988. The biogenic amine contents of dutch cheese and their toxicological significance. Neth Milk Dairy J 42, 25-42.
  13. Kim B, Byun BY and Mah JH. 2012. Biogenic amine formation and bacterial contribution in Natto products. Food Chem 135, 2005-2011. http://dx.doi.org/10.1016/j.foodchem.2012.06.091.
  14. Kim BK, Kim YH, Lee HH, Cho YJ, Kim DS, Oh SM and Shim KB. 2011. Comparison of the chemical compositions and biogenic amine contents of salt-fermented fish sauces produced in Korea to evaluate the quality characteristics. J Fish Mar Sci Edu 23, 607-614.
  15. KMFDS (Korea Ministry of Food and Drug Safety). 2016. Korean Food Code. KMFDS, Cheongju, Korea. Retrieved from http://www.foodsafetykorea.go.kr/portal/safefoodlife/food/foodRvlv/food Rvlv.do. on 11 August.
  16. Lee CS, Jung YT, Park S, Oh TK and Yoon JH. 2010. Lysinibacillus xylanilyticus sp. nov., a xylan- degrading bacterium isolated from forest humus. Int J Syst Evol Microbiol 60, 281-286. http://dx.doi.org/10.1099/ijs.0.013367-0.
  17. Lim SJ, Jang SS and Kang DK. 2007. Probiotic properties of Lactobacillus salivarius CPM-7 isolated from chicken feces. Kor J Microbiol Biotechnol 35, 98-103.
  18. Mah JH, Ahn JB, Park JH, Sung HC and Hwang HJ. 2003. Characterization of biogenic amine producing microorganisms isolated from Myeolchi-Jeot, Korean salted and fermented anchovy. J Microbiol Biotechnol 13, 692-699.
  19. Mah JH, Chang YH and Hwang HJ. 2008. Paenibacillus tyraminigenes sp. nov. isolated from Myeolchi-jeotgal, a traditional Korean salted and fermented anchovy. Int J Food Microbiol 127, 209-214. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.07.002.
  20. Moon JS, Kim SY, Cho KJ, Yang SJ, Yoon GM, Eom HJ and Han NS. 2013. Isolation and characterization of histamineproducing bacteria from fermented fish products. J Microbiol 51, 881-885. http://dx.doi.org/10.1007/s12275-013-3333-0.
  21. NCCLS (National Committee for Clinical Laboratory Standards). 2002. Performance standards for antimicrobial susceptibility testing. Twelfth informational supplement M100-S12. Wayne, Pennsylvania, U.S.A., 19087-19098.
  22. Otto M. 2012. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 34, 201-214. http://dx.doi.org/10.1007/s00281-011-0296-2.
  23. Shalaby AR. 1996. Significance of biogenic amines to food safety and human health. Food Res Int 29, 675-690. http://dx.doi.org/10.1016/s0963-9969(96)00066-x.
  24. Shin DM, Kim HD, Koo JG and Park KS. 2012. Inhibition of pathogenic bacteria by Pediococcus pentosaceus strain SH-10 isolated from hard clam Meretrix meretrix Sikhae. Korean J Fish Aquat Sci 45, 600-605. http://dx.doi.org/10.5657/KFAS.2012.0414.
  25. USFDA (US Food and Drug Administration). 2011. Fish and Fishery Products Hazards and Controls Guidance. Fourth Edition. Chapter 7. Scombrotoxin (histamine) formation, 113-152.
  26. Yang J, Ding X, Qin Y and Zeng Y. 2014. Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd. J Agric Food Chem 62, 7947-7954. http://dx.doi.org/10.1021/jf501772s.
  27. Zaman MZ, Abu Baker F, Jinap S and Bakar J. 2011. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. Int J Food Microbiol 145, 84-91. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.031.