DOI QR코드

DOI QR Code

Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS)

On-axis 스퍼터링과 FTS 공정으로 증착한 ZTO 박막트랜지스터의 특성

  • Lee, Se-Hee (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 이세희 (충남대학교 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과)
  • Received : 2016.10.01
  • Accepted : 2016.10.30
  • Published : 2016.12.27

Abstract

We have investigated the properties of thin film transistors(TFT) fabricated using zinc tin oxide(ZTO) thin films deposited via on-axis sputtering and FTS methods. ZTO thin films deposited by FTS showed lower root-mean-square(RMS) roughness and more uniformity than those deposited via on-axis sputtering. We observed enhanced electrical properties of ZTO TFT deposited via FTS. The ZTO films were deposited at room temperature via on-axis sputtering and FTS. The as-deposited ZTO films were annealed at $400^{\circ}C$. The TFT using the ZTO films deposited via FTS process exhibited a high mobility of $12.91cm^2/V.s$, a low swing of 0.80 V/decade, $V_{th}$ of 5.78 V, and a high $I_{on/off}$ ratio of $2.52{\times}10^6$.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. S. J. Seo, C. G. Choi, Y. H. Hwang and B. S. Bae, J. Phys. D: Appl. Phys., 42, 035106 (2009). https://doi.org/10.1088/0022-3727/42/3/035106
  3. P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante and E. Fortunate, IEEE Trans. Electron Dev., 55, 954 (2008). https://doi.org/10.1109/TED.2008.916717
  4. J. S. Lee, Y. J. Kim, Y. U. Lee, Y. H. Kim, J. Y. Kwon and M. K. Han, Jpn. J. Appl. Phys., 51, 061101 (2012). https://doi.org/10.7567/JJAP.51.061101
  5. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). https://doi.org/10.1063/1.1843286
  6. B. D. Ahn, D. W. Choi, C. Choi and J. S. Park, Appl. Phys. Lett., 105, 092103 (2014). https://doi.org/10.1063/1.4895102
  7. A. Suresh, P. Wellenius, A. Dhawan and J. Muth, Appl. Phys. Lett., 90, 123512 (2007). https://doi.org/10.1063/1.2716355
  8. H. J. Choi, H. J. Jung, S. G. Hur and S. G. Yoon (in Korean), J. KIEEME, 24, 126 (2011).
  9. R. L. Hoff, Solid-State Electron., 50, 784 (2006). https://doi.org/10.1016/j.sse.2006.03.004
  10. H. J. Choi, S. G. Yoon, J. H. Lee and J. Y. Lee, ECS J. Solid State Sci. Technol., 1, Q106 (2012). https://doi.org/10.1149/2.016205jss
  11. F. M. Hossain, J. Nishii, S. Takagi, A. Ohtomo and T. Fukumura, J. Appl. Phys., 94, 7768 (2003). https://doi.org/10.1063/1.1628834
  12. Y. Y. Choi, S. J. Kang and H. K. Kim, Curr. Appl. Phys., 12, S104 (2012).
  13. Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 3255 (2013). https://doi.org/10.1021/am400110y
  14. J. M. Lee, B. H. Choi, M. J. Ji, J. H. Park, J. H. Kwon and B. K. Ju, Semicond. Sci. Technol., 24, 055008 (2009). https://doi.org/10.1088/0268-1242/24/5/055008
  15. Y. Jeong, K. Song, K. Woo, T. Jun, Y. Jung and J. Moon (in Korean), Korean J. Mater. Res., 20, 401 (2010). https://doi.org/10.3740/MRSK.2010.20.8.401
  16. S. Martin, C. S. Chiang, J. Y. Nahm, T. Li, J. Kanicki and Y. Ugai, Jpn. J. Appl. Phys., 40, 530 (2001). https://doi.org/10.1143/JJAP.40.530