DOI QR코드

DOI QR Code

Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics

  • Park, Jong-Ho (Department of Science Education, Chinju National University of Education) ;
  • Park, Hui-Jin (Department of Physics, Pukyong National University) ;
  • Choi, Byung-Chun (Department of Physics, Pukyong National University)
  • Received : 2016.07.21
  • Accepted : 2016.11.09
  • Published : 2016.12.27

Abstract

This work focuses on the electrical conduction mechanism in a lead free ($Na_{0.5}K_{0.5}NbO_3$ ; NKN) ceramics system with $LiNbO_3$ content of approximately critical concentration $x{\geq}0.2$. Lead free $(1-x)(Na_{0.5}K_{0.5})NbO_3-x(LiNbO_3)$, $NKN-LN_x$ (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient $k_p$ decreases and the phase transition temperature $T_c$ increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ${\varepsilon}^{\prime}$ and $k_BT{\varepsilon}^{\prime\prime}$ showed anomalies around $T_c$ ($462^{\circ}C$ in the NKN-LN0.1 and $500^{\circ}C$ in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as $E_I=1.76eV$ (NKN-LN0.1) and $E_I=1.55eV$ (NKN-LN0.2), above $T_c$, and $E_{II}=0.78$ (NKNL-N0.1) and $E_{II}=0.81$ (NKN-LN0.2) below $T_c$. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of $Li^+$ ions.

Keywords

References

  1. Y. Xu, Ferroelectric Materials and Their Applicarions, North-Holland (1991).
  2. Y. Guo, K. Kakimoto and H. Ohsato, Solid State Commun., 129, 279 (2004). https://doi.org/10.1016/j.ssc.2003.10.026
  3. M. Matubara, T. Yamaguchi, K. Kikuta and S. Hirano, Jpn. J. Appl. Phys., 44, 258 (2005). https://doi.org/10.1143/JJAP.44.258
  4. B. Jaffe, R. S. Roth and S. marzullo, J. Appl. Phys., 25, 809 (1954). https://doi.org/10.1063/1.1721741
  5. H. Ouchi, K. Nagano and S. Hayakawa, J. Am. Ceram. Soc., 48 630 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14694.x
  6. S.-E. Park and T. R. Shout, J. Appl. Phys., 42, 6086 (2003). https://doi.org/10.1143/JJAP.42.6086
  7. Y. Sugaya, K. Shoji and Koichiro, Jpn. J. Appl. Phys., 42, 6086 (2003). https://doi.org/10.1143/JJAP.42.6086
  8. Z. Yu, R. Guo and A. S. Bhalla, J. Mater. Lett., 57, 349 (2002). https://doi.org/10.1016/S0167-577X(02)00789-9
  9. H. Nagata and T. Taketaka, Jpn. J. Appl. Phys., 36, 6055 (1997). https://doi.org/10.1143/JJAP.36.6055
  10. Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  11. H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee and S. Nahm, Appl. Phys. Lett., 89, 062906 (2006). https://doi.org/10.1063/1.2335816
  12. Y.-W. No, Y.-B. Yoo, S.-M. Son, and S.-T. Chung, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 717 (2006).
  13. Y. Dai, X. Zhzng and G. Zhou, Appl. Phys. Lett., 90, 262903 (2007). https://doi.org/10.1063/1.2751607
  14. Y. Guo, K. Kakimoto and H. Ohsato, Jpn, J. Appl. Phys., 43, 6662 (2004). https://doi.org/10.1143/JJAP.43.6662
  15. Y. Guo, K. Kakimoto and H. Ohsato, Mater. Lett., 59, 241 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  16. S. H. Park, C. W. Ahn, S. Nahm and J. S. Song, Jpn. J. Appl. Phys., 43, 1072 (2004). https://doi.org/10.1143/JJAP.43.L1072
  17. I. Ramajo, R. Parra, M. A. Ramirez and M. S. Castro, Bull. Mater.Sci., 34, 1213 (2011). https://doi.org/10.1007/s12034-011-0241-y
  18. H.-Y. Park, K.-H. Cho, D.-S. Paik, S. Nahm, H.-G. Lee and D.-H. Kim, J. Appl. Phys., 124101, 102 (2007). https://doi.org/10.1063/1.2822334
  19. Z. S. Ahn and W. A. Schulze, J. Am. Ceram. Soc., 70, 18 (1987).
  20. Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  21. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature (London, U. K.), 432, 84 (2004). https://doi.org/10.1038/nature03028
  22. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang and J. F. Wang, J. Appl. Phys., 100, 104108 (2006). https://doi.org/10.1063/1.2382348
  23. G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. J. Zhang and T. R. Shrout, Appl. Phys. Lett., 88, 212908 (2006). https://doi.org/10.1063/1.2206554
  24. H. J. Park, H. J. Park and B. C. Choi, Trans. Electr. Electron. Mater., 13, 297 (2012). https://doi.org/10.4313/TEEM.2012.13.6.297
  25. R. Wang, R. Xie, T. Sekiya and Y. Simoyo, Mater. Res. Bull., 39, 1709 (2004). https://doi.org/10.1016/j.materresbull.2004.05.007
  26. M. Matsubara, T. Yamaguchi, K. Kikuta and S. Hirano, Jpn. J. Appl. Phys., 44, 258 (2005). https://doi.org/10.1143/JJAP.44.258
  27. A. J. Dekker, Solid State Physics, Macmillan (1969).