DOI QR코드

DOI QR Code

Microwave Sol-Gel Process for Microcystalline Ho3+/Yb3+/Tm3+ Tri-Doped NaY(WO4)2 Phosphors and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2016.10.24
  • Accepted : 2016.11.16
  • Published : 2016.12.27

Abstract

$Ho^{3+}/Yb^{3+}/Tm^{3+}$ tri-doped $NaY_{1-x}(WO_4)_2$ phosphors with proper doping concentrations of $Ho^{3+}$, $Yb^{3+}$ and $Tm^{3+}$ ($x=Ho^{3+}+Yb^{3+}+Tm^{3+}$, $Ho^{3+}$=0.04, 0.03, 0.02, 0.01, $Yb^{3+}$=0.35, 0.40, 0.45, 0.50 and $Tm^{3+}$=0.01, 0.02, 0.03, 0.04) were successfully synthesized via the microwave sol-gel route, and their upconversion properties were investigated. Well-crystallized microcrystalline particles showed fine and homogeneous microcrystalline morphology with particle sizes of $1-2{\mu}m$. The optical properties were comparatively examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the doped particles exhibited white emissions based on blue, green and red emission bands, which correspond to the $^1G_4{\rightarrow}^3H_6$ transitions of $Tm^{3+}$ in the blue region, the $^5S_2/^5F_4{\rightarrow}^5I_8$ transitions of $Ho^{3+}$ in the green region, the $^5F_5{\rightarrow}^5I_8$ transitions of $Ho^{3+}$, and the $^1G_4{\rightarrow}^3F_4$ and $^3H_4{\rightarrow}^3H_6$ transitions of $Tm^{3+}$ in the red region. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.

Keywords

References

  1. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015). https://doi.org/10.1039/C5CP03054D
  2. M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomed. Nanotechnol., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  3. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, D. Ikonnikov and V. Atuchin, Dalton Trans., 45, 15541 (2016). https://doi.org/10.1039/C6DT02378A
  4. L. Li, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou and X. Xu, J. Lumin., 143, 14 (2013). https://doi.org/10.1016/j.jlumin.2013.04.031
  5. C. Ming, F. Song and L. Yan, Opt. Commun., 286, 217 (2013). https://doi.org/10.1016/j.optcom.2012.08.095
  6. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015). https://doi.org/10.1016/j.jssc.2015.04.032
  7. J. Jin, K. Yang, J. Su and Z. Si, J. Lumin., 159, 178 (2015). https://doi.org/10.1016/j.jlumin.2014.11.015
  8. Y. Xu, Y. Wang, L. Xing and X. Tan, Opt. Laser Technol., 54, 50 (2013). https://doi.org/10.1016/j.optlastec.2013.05.005
  9. D. Li, Y. Wang, X. Zhang, G.Shi, G. Liu and Y. Song, J. Alloys Compd., 550, 509 (2013). https://doi.org/10.1016/j.jallcom.2012.10.142
  10. X. Liu, W. Xiang, F. Chen, W. Zhang and Z. Hu, Mater. Res. Bull., 47, 3417 (2012). https://doi.org/10.1016/j.materresbull.2012.07.012
  11. X. Liu, W. Xiang, F. Chen, Z. Hu and W. Zhang, Mater. Res. Bull., 48, 281 (2013). https://doi.org/10.1016/j.materresbull.2012.10.050
  12. N. Xue, X. Fan, Z. Wang and M. Wang, Mater. Lett., 61, 1576 (2007). https://doi.org/10.1016/j.matlet.2006.07.082
  13. S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang and P. Yang, J. Alloys Compd., 529, 140 (2012). https://doi.org/10.1016/j.jallcom.2012.02.156
  14. J. Feng, J. Xu, Z. Zhu, Y. Wang, Z. You, J. Li, H. Wang and C. Tu, J. Alloys Compd., 566, 229 (2013). https://doi.org/10.1016/j.jallcom.2013.03.055
  15. F. Song, L. Han, H. Tan, J. Su, J. Yang, J. Tian, G. Zhang, Z. Cheng and H. Chen, Opt. Commun., 259, 179 (2006). https://doi.org/10.1016/j.optcom.2005.08.049
  16. C. S. Lim, Mater. Res. Bull., 47, 4220 (2012). https://doi.org/10.1016/j.materresbull.2012.09.029
  17. R. D. Shannon, Acta Crystallogr., A32, 751 (1976).
  18. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004). https://doi.org/10.1021/jp048072q
  19. Y. Xu, Y. Wang, L. Shi, L. Xing and X. Tan, Opt. Laser Tech., 54, 50 (2013). https://doi.org/10.1016/j.optlastec.2013.05.005
  20. X. Li, Q. Nie, S. Dai, T. Xu, L. Lu and X. Zhang, J. Alloys Compd., 454, 510 (2008). https://doi.org/10.1016/j.jallcom.2007.02.143
  21. L. G. A. Carvalho, L. A. Rocha, J. M. M. Buarque, R. R. Goncalves, C. S. Nascimento Jr., M. A. Schavon, S. J. L. Ribeiro and J. L. Ferrari, J. Lumin., 159, 223 (2015). https://doi.org/10.1016/j.jlumin.2014.11.027
  22. H. Gong, D. Yqang, X. Zhao, E. Y. B. Pun and H. Lim, Opt. Mater., 32, 554 (2010). https://doi.org/10.1016/j.optmat.2009.11.013
  23. T. T. Basiev, A. A. Sobel, Y. K. Voronko and P. G. Zverev, Opt. Mater., 15, 205 (2000). https://doi.org/10.1016/S0925-3467(00)00037-9
  24. V. V. Atuchin, V. G. Grossman, S. V. Adichtchev, N. V. Surovtsev, T. A. Gavrilova and B. G. Bazarov, Opt. Mater., 34, 812 (2012). https://doi.org/10.1016/j.optmat.2011.11.016
  25. A. A. Savina, V. V. Atuchin, S. F. Solodovnikov, Z. A. Solodovnikova, A. S. Krylov, E. A. Maximovskiy, M. S. Molokeev, A. S. Oreshonkov, A. M. Pugachev and E. G. Khaikina, J. Solid State Chem., 225, 53 (2015). https://doi.org/10.1016/j.jssc.2014.11.023
  26. V. V. Atuchin, O. D. Chimitova, T. A. Gavrilova, M. S. Molokeev, Sung-Jin Kim, N. V. Surovtsev and B. G. Bazarov, J. Cryst., Growth, 318, 683 (2011). https://doi.org/10.1016/j.jcrysgro.2010.09.076
  27. V. V. Atuchin, O. D. Chimitova, S. V. Adichtchev, J. G. bazarov, T. A. Gavrilova, M. S. Molokeev, N. V. Surovtsev and Zh. G. Bazarova, Mater. Lett., 106, 26 (2013). https://doi.org/10.1016/j.matlet.2013.04.039