DOI QR코드

DOI QR Code

Vanadium-doped semi-insulating SiC single crystal growth by using porous graphite

다공성 흑연 소재를 이용한 바나듐 도핑된 반절연 SiC 단결정 성장의 특성 연구

  • Lee, Dong-Hun (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Kim, Hwang-Ju (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Kim, Young-Gon (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Su-Hun (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Park, Mi-Seon (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jang, Yeon-Suk (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Lee, Won-Jae (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jung, Kwang-Hee (Sapphire Technology) ;
  • Kim, Tae-Hee (Sapphire Technology) ;
  • Choi, Yi-Sik (Sapphire Technology)
  • Received : 2016.10.06
  • Accepted : 2016.11.04
  • Published : 2016.12.31

Abstract

Vanadium-doped SiC crystals have been grown by using a porous graphite inner crucible filled with vanadium carbide (VC) and by using a porous graphite plate and SiC + VC powders, respectively. Semi-insulating SiC crystals were grown onto the 6H-SiC seed crystals by PVT (Physical Vapor Transport) method. The grown crystals were indicated to be 6H-SiC polytype by XRD. As result of SIMS analysis, vanadium-rich precipitates were observed when the vanadium concentration was relatively higher than the maximum solubility of vanadium ($3-5{\times}10^{17}cm^{-3}$) in vanadium-doped SiC crystals, which resulted in degradation of crystal quality.

본 연구에서는 다공성 흑연 캡슐에 Vanadium carbide(VC) 분말을 채워 성장시킨 방법과 SiC 분말과 VC 분말을 혼합하여 다공성 흑연판을 그 위에 덮은 후 성장시키는 방법으로 진행하였으며, 성장된 결정들은 여러 분석방법을 사용하여 각각의 특성들을 관찰하였다. 반절연 SiC 성장은 6H-SiC 종자 결정을 사용하여 PVT(Physical Vapor Transport)법으로 성장을 진행하였다. 반절연으로 성장된 SiC 결정은 XRD를 이용하여 6H-SiC인 것을 확인하였으며, SIMS 분석결과 바나듐 도핑 농도가 바나듐 용해의 한계값 보다 높을 경우 석출물이 발생되며, 결정 품질 저하의 원인이 됨을 확인할 수 있었다.

Keywords

References

  1. N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo and H. Yashiro, "Growth of large high-quality SiC single crystals", J. Cryst. Growth 237-239 (2002) 1180. https://doi.org/10.1016/S0022-0248(01)02153-4
  2. A. Gupta, P. Wu, V. Rengarajan, X. Xu, M. Yoganathan, E. Emorhokpor, A. Souzis, I. Zwieback and T. Anderson, "Status of large diameter SiC single crystals", Mater. Sci. Forum 717-720 (2012) 3. https://doi.org/10.4028/www.scientific.net/MSF.717-720.3
  3. St. G. Muller, M.F. Brady, W.H. Brixius, G. Fechko, R.C. Glass, D. Henshall, H. McD. Hobgood, J.R. Jenny, R. Leonard, D. Malta, A. Powell, V.F. Tsvetkov, S. Allen, J. Palmour and C. H. Carter Jr., "High Quality SiC Substrates for Semiconductor Devices: From Research to Industrial Production", Mat. Sci. Forum 389-393 (2002) 23. https://doi.org/10.4028/www.scientific.net/MSF.389-393.23
  4. M. Bickermann, D. Hofmann, T.L. Straubinger, R. Weingarthner and A. Winnacker, "On the preparation of vanadium-doped semi-insulating SiC bulk crystals", Mater. Sci. Forum 389-393 (2002) 139. https://doi.org/10.4028/www.scientific.net/MSF.389-393.139
  5. S. Nishino, Y. Kojima and J. Saraie, "Amorphous and crystalline silicon carbide III", G.L. Harris, M.G. Spencer, C. Yang, Vol. 56 (Springer-Verlag, New York, 1992) p. 15.
  6. M. Bickermann, R. Weingartner and A. Winnacker, "On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield", J. Cryst. Growth 254 (2003) 390. https://doi.org/10.1016/S0022-0248(03)01179-5
  7. M. Bickermann, B.M. Epelbaum, D. Hofmann, T.L. Straubinger, R. Weingartner and A. Winnacker, "Incorporation of boron and vanadium during PVT growth of 6H-SiC crystals", J. Cryst. Growth 233 (2001) 211. https://doi.org/10.1016/S0022-0248(01)01579-2
  8. H.J. Lee, H.T. Lee, H.W. Shin, M.S. Park, Y.S. Jang, W.J. Lee, I.G. Yeo, T.H. Eun, J.Y. Kim, M.C. Chun, S.H. Lee and J.G. Kim, "Effect of porous graphite for high quality SiC crystal growth by PVT method", Mater. Sci. Forum 821-823 (2015) 43. https://doi.org/10.4028/www.scientific.net/MSF.821-823.43