DOI QR코드

DOI QR Code

Fabrication of anti-reflection thin film by using sol-gel hybrid solution

Sol-gel 하이브리드 용액을 이용한 반사방지막 제조

  • Park, Jong-Guk (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Ji-Sun (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Mi-Jai (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young Jin (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Dae-Woo (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Optic & Display Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 박종국 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 이지선 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 이미재 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 이영진 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 전대우 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 김진호 (한국세라믹기술원 광.디스플레이소재센터)
  • Received : 2016.09.28
  • Accepted : 2016.11.11
  • Published : 2016.12.31

Abstract

Anti-reflection (AR) thin films were fabricated on a glass substrate by using an ultrasonic spray. Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) were used to synthesize a sol-gel hybrid coating solution. The moving speed of spray nozzle was changed from 15~25 mm/s to control the coating thickness of AR thin film. As the moving speed of spray nozzle increased, the thickness of AR thin film decreased from 138 nm to 86 nm. When the AR thin film was fabricated by nozzle moving speed of 20 mm/s, the refractive index and thickness of AR thin film was measured to be 1.31 and 104 nm, respectively. The average reflectance and transmittance of AR thin film coating glass was measured to be 0.75 % and 94 %, respectively into the visible light range of 380~780 nm.

초음파 스프레이를 이용하여 유리기판 위에 반사방지 박막이 제조되었다. GPTMS와 TEOS는 솔-젤 하이브리드 코팅 용액을 제조하기 위하여 사용되었다. 반사방지막의 코팅 두께를 제어하기 위하여 스프레이 노즐의 이동속도는 15~25 mm/s로 변경되었다. 스프레이 노즐의 이동속도가 증가 됨에 따라 반사방지막의 두께는 138 nm에서 86 nm로 감소되었다. 20 mm/s의 노즐 이동속도에 의해 제조된 반사방지막의 굴절률은 약 1.31, 막의 두께는 104 nm이며, 380 nm에서 780 nm의 가시광 영역에서의 평균 반사율은 0.75 %, 투과율은 94 %로 측정되었다.

Keywords

References

  1. J. Sczybowski, G. Brauer, G. Teschner and A. Zmelty, "Large-scale antireflective coatings on glass produced by reactive magnetron sputtering", Surf. Coat. Technol. 98 (1998) 1460. https://doi.org/10.1016/S0257-8972(97)00151-5
  2. A. Yen, H.I. Smith, M.L. Schattenbyrg and G.N. Tayor, "An anti-reflection coating for use with PMMA at 193 nm", J. Electrochem. Soc. 139 (1992) 616. https://doi.org/10.1149/1.2069266
  3. C.L. Luyer, L. Lou, C. Bovier, J.C. Plenet, J.G. Dumas and J. Mugnier, "Rare-earth-activated glassceramics waveguides", Opt. Mater. 18 (2001) 221.
  4. J. Puetz, F.N. Chalvet and M.A. Aegerter, "Wet chemical deposition of transparent conducting coating in glass tubes", Thin Solid Films 442 (2003) 53. https://doi.org/10.1016/S0040-6090(03)00941-6
  5. D. Bouhafs, A. Moussi, A Chikouche and J.M. Ruiz, "Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells", Sol. Energy Mater. Sol. Cells 50 (1998) 79. https://doi.org/10.1016/S0927-0248(97)00125-6
  6. C.J. Brinker and G.W. Scherer, "Sol-gel science: The physics and chemistry of sol-gel processing", Sol-Gel Science (Academic Press, London, 1990).
  7. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis and G. Koras, "Optical properties of very thin (< 100 nm) solgel $TiO_2$ films", Thin Solid Films 323 (1998) 188. https://doi.org/10.1016/S0040-6090(97)01018-3
  8. J.H. Kim and S. Shiratori, "Characterization of $TiO_2$/ polyelectrolyte thin film fabricated by a layer-by-layer self-assembly method", J. Appl. Phys. 44 (2005) 7588. https://doi.org/10.1143/JJAP.44.7588
  9. Y. Tsuge, J.H. Kim, Y. Sone, O. Kuwaki and S. Shiratori, "Fabrication of transparent $TiO_2$ film with high adhesion by using self-assembly methods: Application to super-hydrophilic film", Thin Solid Films 516 (2008) 2463. https://doi.org/10.1016/j.tsf.2007.04.084
  10. H.J. Kim, K.J. Jeong and D.S. Bae, "Synthesis and characterization of Fe doped $TiO_2$ nanoparticles by a sol-gel and hydrothermal process", J. Mater. Res. 22 (2012) 249.
  11. C. Girotto, B.P. Rand, J. Genoe and P. Heremans, "Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells", Sol. Energy Mater. Sol. Cells 93 (2009) 454. https://doi.org/10.1016/j.solmat.2008.11.052
  12. C. Martinet, V. Paillard, A. Gagnaire and J. Joseph, "Deposition of $SiO_2$ and $TiO_2$ thin films by plasma enhanced chemical vapor deposition for antireflection coating", J. Non-Cryst. Solids 216 (1997) 77. https://doi.org/10.1016/S0022-3093(97)00175-0
  13. J. Zhao and M.A. Green, "Optimized antireflection coatings for high-efficiency silicon solar cells", IEEE Trans. Electron Dev. 38 (1991) 1925. https://doi.org/10.1109/16.119035
  14. L. Miao, L.F. Su, S. Tanemura, C.A.J. Fisher, L.L. Zhao, Q. Liang and G. Xu, "Cost-effective nanoporous $SiO_2$-$TiO_2$ coatings on glass substrates with antireflective and self-cleaning properties", Appl. Energy 122 (2013) 1198.
  15. J.G. Park, D.W. Jeon, M.J. Lee, T.Y. Lee, J.H. Hwang, D.S. Bae and J.H. Kim, "Fabrication of single layer anti-reflection thin film by sol-gel method", J. Korean Inst. Electr. Electron. Mater. Eng. 28 (2015) 821.