DOI QR코드

DOI QR Code

Band alignments in Al-doped GaInAsSb/GaSb heterojunctions

Al이 도핑된 GaInAsSb/GaSb의 경계면에서의 밴드정렬

  • 심규리 (경기대학교 이과대학 전자물리학과)
  • Received : 2016.10.06
  • Accepted : 2016.10.28
  • Published : 2016.12.31

Abstract

The valence band maximum (VBM) and conduction band minimum (CBM) of Al-doped GaInAsSb alloys substrated on GaSb are calculated by using an analytic approximation based on the tight binding method. The relative positions of the VBM and CBM between Al-GaInASSb and GaSb determine band alignement type, valence band offset (VBO) and conductin band offset (CBO) for the heterojunctions. In this study, aluminium doping is assumed to be substituted in the cation site and limited up to 20 % because it can easily oxidize and degrade materials. It is found that the Al-doped alloys exhibit type-II band alignments over the entire composition range and make the band gaps increase, whereas the VBO and CBO decrease. The decreasing rate of VBO is higher than that of CBO, which implies the Al components play a decisive role in controlling electrons at the interface. The Al-dopled GaInAsSb alloy has a direct band gap induced by $E({\Gamma})$ with a considerable distance from the E(L) and E(X), however, $E({\Gamma})$ approaches to E(L) and E(X) in the high Sb concentration (Sb > 0.7-0.8) which might affect the electron mobility and degrade the optical quality.

GaSb 기판위에 Al이 도핑된 GaInAsSb(Al-GaInAsSb)에 대한 최고 가전대 준위(VBM)와 최저 전도대 준위(CBM) 변화를 범용적 밀접결합방법에 근거한 해석적 근사법을 이용하여 계산하였다. GaSb와 Al-GaInAsSb 의 상대적 VBM과 CBM 준위에 따라 경계면에서의 밴드정렬 타입과 가전자대 오프셋(VBO)과 전도대 오프셋(CBO)이 결정된다. 본 논문에서는 Al 도핑이 GaInAsSb의 양이온 자리에 치환된다는 가정하에 이론이 전개 되었으며, Al은 부식등으로 결정의 질을 떨어트릴 수 있는 요인이 되므로 20 %까지 제한하였다. Al 도핑 결과, 전 구간에서 제 II 형의 밴드정렬형태를 갖게 되며, 밴드갭이 증가되는 반면 VBO와 CBO 는 감소됨을 알수 있었다. CBO 에 대한 감소비율 VBO 보다 더 크므로, Al 도핑은 경계면에서의 전자 콘트롤에 더 효율적으로 작용함을 알 수 있었다. Al-GaInAsSb은 전 구간에서 $E({\Gamma})$가 E(L)이나 E(X)보다 낮은 직접 갭을 나타 내고 있지만, Sb 성분이 많아지면(70~80 % 이상) E(L)과 E(X)이 $E({\Gamma})$에 가까워져서 전자 이동도에 영향을 주어 광학적 효율이 다소 떨어질 수 있음을 알 수 있었다.

Keywords

References

  1. J.A. Gupta, P.J. Barrios, J. Lapointe, G.C. Aers and C. Storey, "Single-mode 2.4 ${\mu}m$ InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing", Appl. Phys. Lett. 95 (2009) 041104. https://doi.org/10.1063/1.3189814
  2. A. Krier, V.M. Smirmow, P.J. Batty, M. Yin, K.T. Lai, S. Rybchenko, S.K. Haywood, V.I. Vasil'ev, G.V. Gagis and V.I. Kuchinskii, "Midinfrared photoluminescence and compositional modulation in pentanary GaInAsPSb alloys grown by liquid phase epitaxy", Appl. Phys. Lett. 91 (2007) 082102. https://doi.org/10.1063/1.2768892
  3. D.H. Jaw, J.R. Chang and Y.K. Su, "Observation of self-organized superlattice in AlGaInAsSb pentanary alloys", Appl. Phys. Lett. 82 (2003) 3883. https://doi.org/10.1063/1.1581979
  4. O. Marquardt, T. Hickel, J. Neugebauer, K.M. Gambaryan and V.M. Aroutiounian, "Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures", J. Appl. Phys. 110 (2011) 043708. https://doi.org/10.1063/1.3624621
  5. A. Jdidi, N. Sfina, S.A.-B. Nassrallah, M. Said and J.L. Lazzari, "A multi-color quantum well photodetector for mid- and long-wavelength infrared detection", Semicond. Sci. Technol. 26 (2011) 125019. https://doi.org/10.1088/0268-1242/26/12/125019
  6. J.L. Lazzari, J.L. Leclereq, P. Grunberg, J. Joullie, B. Lambert, D. Barbusse and R. Four, "Liquid phase epitaxial growth of AlGaAsSb on GaSb", J. Cryst. Growth 123 (1992) 465. https://doi.org/10.1016/0022-0248(92)90608-L
  7. L. Shterengas, G.L. Belenky, A. Gourevitch, J.G. Kim, and R.U. Martinelli, "Measurement of ${\alpha}$-factor in 2-2.5 ${\mu}m$ type-I In(Al)GaAsSb/GaSb high power diode lasers", Appl. Phys. Lett. 81 (2002) 4517. https://doi.org/10.1063/1.1528291
  8. J.G. Kim, L. Shterenga, R.U. Martinelli and G.L. Belendky, "High-power room-temperature continuous wave operation of 2.7 and 2.8 ${\mu}m$ In(Al)GaAsSb/GaSb diode lasers", App. Phys. Lett. 83 (2003) 1926. https://doi.org/10.1063/1.1605245
  9. M. Muller, T. Lehnhardt, K. Robner and A. Forchel, "Tunable lasers on GaSb using the concept of binary superimposed gratings", Appl. Phys. Lett. 93 (2008) 081117. https://doi.org/10.1063/1.2977461
  10. K. Shim and H. Rabitz, "Universal tight-binding calculation for the electronic structure of the quaternary alloy", Phys. Rev. B 57 (1998) 12874. https://doi.org/10.1103/PhysRevB.57.12874
  11. K. Shim and H. Rabitz, "Theoretical valence band offsets of semiconductor heterojunctions", Appl. Phys. Lett. 80 (2002) 4543. https://doi.org/10.1063/1.1483904
  12. K. Shim, "Composition dependence of band alignments in $Ga_xIn_{1-x}As_ySb_{1-y}$ heterojunction lattice matched to GaSb and InAs", J. Appl. Phys. 114 (2013) 203703. https://doi.org/10.1063/1.4834536
  13. W.A. Harrison, "Electronic structure and the properties of solids" (Dover Publications, New York, 1989) p. 50.
  14. K. Shim, "Composition behaviour of energy band gaps in the alloy $Al_xGa_yIn_{1-x-y}Sb_zAs_{1-z}$", Phil. Mag. 94, (2014) 3088. https://doi.org/10.1080/14786435.2014.949325
  15. O. Madelung (ed.), "Semiconductors - Basic Data" (Springer-Verlag, Berlin, 1996) p. 75.