DOI QR코드

DOI QR Code

Synthesis and Characterization of Photosensitizer-conjugated Gold Nanorods for Photodynamic/Photothermal Therapy

광역학적/광열치료 응용을 위한 광증감제가 결합한 골드 나노로드의 합성 및 특성분석

  • Choi, Jongseon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, So Yeon (Graduate School of Energy Science and Technology, Chungnam National University)
  • 최종선 (충남대학교, 에너지과학기술대학원) ;
  • 김소연 (충남대학교, 에너지과학기술대학원)
  • Received : 2016.09.25
  • Accepted : 2016.10.11
  • Published : 2016.12.10

Abstract

Recently, photodynamic and photothermal therapies have received increasing attention as an effective cancer treatment. In this study, a gold nanorod (AuNR) colloidal solution was synthesized as a hyperthermia agent for photothermal therapy and also modified with photosensitizer (PS) for photodynamic therapy. PEG (polyethylene glycol) and FA (folic acid) ligand were also introduced into AuNR for the long circulation in human body and efficient targeting of cancer cells, respectively and AuNRs were modified with FA-PEG and poly-${\beta}$-benzyl-L-aspartate (PBLA) block copolymers through a 3,4-dihydroxy hydrocinnamic acid (HCA) linker. A series of AuNRs with various aspect ratios were synthesized by controlling the feeding ratio of $AgNO_3$. The physicochemical property and morphology of synthesized AuNR100 and FA-PEG-$P(Asp)_{50}$-HCA-AuNR100 were analyzed by UV-visible spectrophotometer, $^1H$ NMR, XPS measurements, TEM. The surface modified AuNR carrier with biocompatibility could be applied for the effective diagnosis as well tumor phototherapy.

최근 효과적인 암 치료 방법으로 광역학치료(photodynamic therapy)와 광열치료(photothermal therapy)가 주목받고 있다. 본 연구에서는 광열치료에 필요한 광열인자로써의 역할을 할 수 있는 골드 나노로드(AuNR)를 합성하고, 그 표면에 광역학치료를 위한 광증감제(photosensitizer)를 결합하였다. 즉, 골드 나노로드를 체내에 오래 머무르도록 하기 위해 PEG(polyethylene glycol) 및 효과적인 암 표적지향성을 위해 FA (folic acid) 리간드를 도입하였고, FA-PEG와 poly-${\beta}$-benzyl-L-aspartate (PBLA)로 이루어진 블록 공중합체를 3,4-dihydroxy hydrocinnamic acid (HCA) linker를 사용하여 골드 나노로드의 표면개질을 하였다. 또한 $AgNO_3$의 feeding ratio 변화를 통해 다양한 aspect ratio를 갖는 골드 나노로드를 합성하였고, UV-visible spectrophotometer, $^1H$-NMR, XPS, TEM 분석을 통해 FA-PEG-$P(Asp)_{50}$-HCA-AuNR100의 물리 화학적 특성과 morphology를 분석하였고, 성공적인 표면 개질을 확인할 수 있었다. 골드 나노로드의 표면 개질을 통한 생체 적합성 약물전달체의 합성은 효과적인 암 진단 및 다양한 광역학/광열치료 분야에 응용이 될 수 있을 것으로 기대된다.

Keywords

References

  1. H. Youn, K. W. Kang, J. K. Chung, and D. S. Lee, Nanomedicine: Drug delivery systems and nanoparticle targeting, Nucl. Med. Mol. Imaging., 42, 337-346 (2008).
  2. P. Couvreur and C. Vauthier, Polyalkylcyanoacrylate nanoparticles as drug carrier: present state and perspectives, J. Control. Release, 17, 187-198 (1991). https://doi.org/10.1016/0168-3659(91)90058-L
  3. Y. Tabata, Y. Murakami, and Y. Ikada, Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection, J. Control. Release, 50, 123-133 (1998). https://doi.org/10.1016/S0168-3659(97)00129-6
  4. E. M. Liversidege, G. G. Liversidege, and E. R. Cooper, Nanosizing: a formulation approach for poorly-water-soluvle compounds, Eur. J. Pharm. Sci., 18, 113-120 (2003). https://doi.org/10.1016/S0928-0987(02)00251-8
  5. W. M. Sharman, C. M. Allen, and J. E. van Lier, Photodynamic therapeutics: basic principles and clinical applications, Drug Discov. Today, 4, 507-517 (1999). https://doi.org/10.1016/S1359-6446(99)01412-9
  6. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 90, 889-905 (1998). https://doi.org/10.1093/jnci/90.12.889
  7. M. H. Gold, Introduction to photodynamic therapy: early experience, Dermatol. Clin., 25, 1-4 (2007).
  8. D. E. Dolmans, D. Fukumura, and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 3, 380-387 (2003). https://doi.org/10.1038/nrc1071
  9. A. J. Gormley, K. Greish, A. Ray et al., Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery, Int. J. Pharm., 30, 315-318 (2011).
  10. G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cance Res., 69, 3892-3900 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4242
  11. A. P. Castano, P. Mroz, and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 6, 535-545 (2006). https://doi.org/10.1038/nrc1894
  12. R. Ackroyd, C. Kelty, N. Brown, and M. Reed, The history of photodetection and photodynamic therapy, Photochem., 74, 656-669 (2001).
  13. S. K. Baek, Clinical application of nanotechnology, Korean J. Otorhinolaryngol-Head Neck Surg., 54, 185-191 (2011). https://doi.org/10.3342/kjorl-hns.2011.54.3.185
  14. H. Ma, P. M. Bendix, and L. B. Oddershede, Large-scale orientation dependent Heating from a single irradiated gold nanorod, Nano Lett., 12, 3954-3960 (2012). https://doi.org/10.1021/nl3010918
  15. S. E. Lohse and C. J. Murphy, The quest for shape control: A history of gold nanorod synthesis, Chem. Mater., 25, 1250-1261 (2013). https://doi.org/10.1021/cm303708p
  16. B. S. Jang, J. Y. Park, C. H. Tung, I.-H. Kim, and Y. Choi, Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo, ACS Nano., 2, 1086-1094 (2011).
  17. K. Y. Lin, A. F. Bagley, A. Y. Zhang, D. L. Karl, S. S. Yoon, and S. N. Bhatia, Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma, Nano Life, 1, 277-287 (2010). https://doi.org/10.1142/S1793984410000262
  18. G. F. Paciotti, L. Myer, D. Weinreich et al., Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 11, 169-183 (2004). https://doi.org/10.1080/10717540490433895
  19. Q. L. Li and Y. H. Cao, Preparation and characterization of gold nanorods. In: Dr. Orhan Yalci (eds.). Nanorods, 159-178, Rijeka, Croatia (2012).
  20. T. K. Sau and C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, 20, 6414-6420 (2004). https://doi.org/10.1021/la049463z
  21. L. Zhao, T. H. Kim, J. C. Ahn, H. W. Kim, and S. Y. Kim, Highly efficient "theranostics" system based on surface-modified gold nanocarriers for imaging and photodynamic therapy of cancer, J. Mater. Chem. B., 1, 5806-5817 (2013).
  22. X. Huang, S. Neretina, and M. A. El-sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880-4910 (2009). https://doi.org/10.1002/adma.200802789
  23. C. J. Murphy, L. B. Thompson, D. J. Chernak, J. A. Yang, S. T. Sivapalan, S. P. Boulos, J. Huang, A. M. Alkilany, and P. N. Sisco, Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting, Curr. Opin. Colloid Interface Sci., 16, 128-134 (2011). https://doi.org/10.1016/j.cocis.2011.01.001
  24. B. Nikoobakht and M. A. El-sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater., 15, 1957-1962 (2003). https://doi.org/10.1021/cm020732l
  25. M. A. Liu, P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B., 109, 22192-22200 (2005). https://doi.org/10.1021/jp054808n
  26. M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, Defining rules for the shape evolution of gold nanoparticles, J. Am. Chem. Soc., 134, 14542-14554 (2012). https://doi.org/10.1021/ja305245g
  27. X. Huang, I. H. El-sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and phtothermal therapy in the near-infrared region by using gold nanorods, Langmuir, 26, 6066-6070 (2010). https://doi.org/10.1021/la904467b
  28. B. Isomaa, J. Reuter, and B. M. Diupsund, The subacute and chronic toxicity of cetyltrimethylammounium bromide (CTAB), a cationic surfactant, in the rat, Arch. Toxicol., 35, 91-96 (1979).
  29. P. C. Ray, H. T. Yu, and P. P. Fu, Toxicity and environmental risks of nanomaterials: challenges and future needs, J. Environ. Sci. Health C, 27, 1-35 (2009). https://doi.org/10.1080/10590500802708267
  30. Z. Huang, A review of progress in clinical photodynamic therapy, Technol. Cancer Res. Treat., 4, 283-293 (2005). https://doi.org/10.1177/153303460500400308
  31. J. P. Celli, B. Q. Spring, L. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, Imaging and photodynamic therapy: mechanisms, monitoring, and optimization, Chem. Rev., 110, 2795-2838 (2010). https://doi.org/10.1021/cr900300p
  32. K. Fujiwara and T. Watanabe, Effects of hyperthermia, radiotherapy and thermoradiotherapy on tumor microvascular permeability, Pathol. Int., 40, 79-84 (2008).
  33. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, Photo-thermal tumor ablation in mice using near infrared- absorbing nanoparticles, Cancer Lett., 209, 171-176 (2004). https://doi.org/10.1016/j.canlet.2004.02.004

Cited by

  1. 금 나노입자를 이용한 광열치료 연구 동향 vol.28, pp.4, 2017, https://doi.org/10.14478/ace.2017.1039