DOI QR코드

DOI QR Code

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh (Department of Nano-Mechatronics, Korea University of Science and Technology) ;
  • Ro, Seung-Kook (Department of Nano-Mechatronics, Korea University of Science and Technology) ;
  • Park, Jong-Kweon (Department of Nano-Mechatronics, Korea University of Science and Technology)
  • 투고 : 2016.11.02
  • 심사 : 2016.12.14
  • 발행 : 2016.12.15

초록

The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

키워드

참고문헌

  1. Choi, H. C., Moin, P., Kim, J., 1993, Direct Numerial Simulation of Turbulent Flow Over Riblets, J. Fluid Mech., 255 503-539. https://doi.org/10.1017/S0022112093002575
  2. Ashwin, R., Wasim, A., Surya, P. M., Andrew, H. C., Andreas, A. P., William, P. K., 2013, Friction Characteristics of Micro-textured Surfaces under Mixed and Hydrodynamic Lubrication, Tribology Int., 57 170-176. https://doi.org/10.1016/j.triboint.2012.07.020
  3. Rashwan, O. H., Stoilov, V., Alpas, A. T., Guerrero, A. R., 2012, Effect of Surface Patterning on the Adhesive Friction, ASME Int. Mech. Eng. Cong. & Exp., 3 2117-2124.
  4. Sahlin, F., Glavatskih, S. B., Almqvist, T., Larsson, R., 2005, Two-dimensional CFD-Analysis of Micro-patterned Surfaces in Hydrodynamic Lubrication, Trans. of the ASME, 127:1 96-102. https://doi.org/10.1115/1.1828067
  5. Aviram, R., Izhak, E., Yuri, K., 2001, Friction-reducing Surface-texturing in Reciprocating Automotive Components, Tribology trans., 44:3 359-366. https://doi.org/10.1080/10402000108982468
  6. Shinkarenko, A., Kligerman, Y., Etsion, I., 2009, The Effect of Surface Texturing in Soft Elasto-hydrodynamic Lubrication, Tribology Int., 42:2 284-292. https://doi.org/10.1016/j.triboint.2008.06.008
  7. Christos, I. P., Pantelis, G. N., Lambros, K., 2011, Evolutionary Optimization of Micro-Thrust Bearings with Periodic Partial Trapezoidal Surface Texturing, J. of Eng. for Gas Turb. and Pow., 133:1 1-9.
  8. Etsion, I., 2005, State of the Art in Laser Surface Texturing, Journal of Tribology, 127:1 248-253. https://doi.org/10.1115/1.1828070
  9. Allen, D. M., 2004, Photochemical Machining: From 'Manufacturing's Best Kept Secret' to a $6 Billion Per Annum, Rapid Manufacturing Process, CIRP Annals-Manuf. Tech., 53:2 559-572. https://doi.org/10.1016/S0007-8506(07)60029-8
  10. Hirt, G., Thome, M., 2007, Large are Rolling of Functional Metallic Micro Structures, Prod. Eng. Res. and Dev., 1 351-356. https://doi.org/10.1007/s11740-007-0067-z
  11. Zhou, R., Cao, J., Ehmann, K., Xu, J., 2011, An Investigation on Deformation-based Micro Texturing System, J. Manuf. Sci E-T ASME, 133 1-6.
  12. Macki, J.W., Nistri, P., and Zecca, P., 1993, Mathematical Models for Hysteresis, SIAM Review, 35 1 94-123. https://doi.org/10.1137/1035005
  13. Smith, S. T., 2000, Flexures: Elements of Elastic Mechanisms, Gordon and Breach Science Publishers, Amsterdam, 177-192.
  14. Howell, L. L., 2001, Compliant Mechanism, Wiley-IEEE, 38-53.
  15. Ryu, S. O., Kim, H. Y., Ahn, J. H., 2014, Characteristics of a PZT-driven Micro Depth Adjustment Device for Cutting Coated Film, Journal of the KSMTE, 23:6 630-635. https://doi.org/10.7735/ksmte.2014.23.6.630
  16. Choi, K. B., Lee, J. J., Kim, G. H., Lim, H. J., 2011, A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography, Journal of the Korean Society of Manufacturing Technology Engineers, 20:6 756-760.
  17. Paros, J., and Weisbord, L., 1965, How to Design Flexure Hinges, Machine Design, 37:27 151-156.
  18. Li, Y., Xiao, X. L., Wu, Z. G., 2014, Design, Modeling, Control and Experiment for a 2-DOF compliant Micro-motion Stage, Int. J. of Pre. Eng. and Manuf., 15:4 735-744. https://doi.org/10.1007/s12541-014-0394-x
  19. Liaw, H. C., Shirinzadeh, B., 2008, Enhanced Adaptive Motion Tracking Control of Piezo-actuated Flexurebased Four-bar Mechanisms for Micro/Nano Manipulation, Sensors and Actuators A: Physical, 147:1 254-262. https://doi.org/10.1016/j.sna.2008.03.020
  20. Wang, H., Zhang, X., 2008, Input Coupling Analysis and Optimal Design of a 3-DOF Compliant Micro-positioning Stage, Mechanism and Machine Theory, 43:4 400-410. https://doi.org/10.1016/j.mechmachtheory.2007.04.009
  21. Lin, C. J., Lin, P. T., 2012, Tracking Control of a Biaxial Piezo-actuated Positioning Stage using Generalized Duhem Model, Computers and Mathematics with Applications, 64:5 766-787. https://doi.org/10.1016/j.camwa.2011.12.015
  22. Tan, K. K., Lee, T. H., Zhou, H. X., 2001, Micro-positioning of Linear-piezoelectric Motors based on a Learning Nonlinear PID Controller, IEEE/ASME Transactions on Mechatronics, 6:4 428-436. https://doi.org/10.1109/3516.974856

피인용 문헌

  1. A static model for micro-pattern forming prediction in rolling-based surface texturing vol.92, pp.5, 2017, https://doi.org/10.1007/s00170-017-0345-7