DOI QR코드

DOI QR Code

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard

포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정

  • Cho, ll Kyu (Bio Control Research Center, Jeonnam Bioindustry Foundation) ;
  • Park, Joon Seong (Bio Control Research Center, Jeonnam Bioindustry Foundation) ;
  • Park, So Hyun (Korea Bio-Safety Institute Co. Ltd) ;
  • Kim, Su Jin (Korea Bio-Safety Institute Co. Ltd) ;
  • Kim, Back Jong (Korea Bio-Safety Institute Co. Ltd) ;
  • Na, Tae Wong (Bio Control Research Center, Jeonnam Bioindustry Foundation) ;
  • Nam, Hyo Song (Bio Control Research Center, Jeonnam Bioindustry Foundation) ;
  • Park, Kyung Hun (Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Jiho (Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jeong-Han (Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University)
  • 조일규 ((재)전남생물산업진흥원 생물방제연구센터) ;
  • 박준성 ((재)전남생물산업진흥원 생물방제연구센터) ;
  • 박소현 ((주)한국생물안전성연구소) ;
  • 김수진 ((주)한국생물안전성연구소) ;
  • 김백종 ((주)한국생물안전성연구소) ;
  • 나태웅 ((재)전남생물산업진흥원 생물방제연구센터) ;
  • 남효송 ((재)전남생물산업진흥원 생물방제연구센터) ;
  • 박경훈 (농청진흥청 국립농업과학원 농산물안전성부 화학물질안전과) ;
  • 이지호 (서울대학교 농업생명과학대학 응용생물화학부) ;
  • 김정한 (서울대학교 농업생명과학대학 응용생물화학부)
  • Received : 2016.10.21
  • Accepted : 2016.11.11
  • Published : 2016.12.31

Abstract

BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).

총 6가지의 노출 시료 즉 내복(살포, 조제 각각), 호흡, 거즈, 손(세척액), 장갑(세척액)에 회수율 시험한 결과, 평균 70.1~119.8%의 회수율을 보었으며, 포도과수원에서 회수율 분석 결과 평균 97.3~119.6%의 포장회수율을 나타냈다. Difenoconazole의 10개 시험 과수원에서 농작업자의 피부노출 총량은 0.1106~1.5360 mg 수준이었으며, 호흡 노출량은 $0.529{\mu}g$ 이었고 피부노출량과 호흡노출량을 합한 총 노출량은 0.1111~1.5365 mg 수준이었다. 살포 할 때 10개 과수원에서 농작업자의 피부 노출 총량은 4.2032~25.0635 mg 수준이었고 호흡 노출량은 $0.529{\sim}116.241{\mu}g$ 수준 이었다. 10개 시험 과수원에서 농작업자의 피부노출량과 호흡노출량을 합한 총 노출량은 2.5961~25.0687 mg 수준이었다. Difenoconazole의 농작업자 노출량를 평가하기 위해 경북영주의 10개 포도 과원에서 difenoconazole 약제의 살포액 조제 및 살포시 농작업자의 피부노출량의 평균을 기본값으로 한 결과 조제할 대는 0.02 mg이 검출되었으며 살포할 때는 2.28 mg이 검출되었다. 그리고 살포시 difenoconazole의 호흡 노출량은 0.02 mg으로 이는 피부 노출량의 0.9% 수준이었다. Difenoconazole의 농작업자의 총 피부 노출량을 피부흡수율로 계한 값인 0.004 mg/kg bw/day(평균 체중 : 60 kg)은 설정된 difenoconazole의 농작업자노출량인 0.16 mg/kg bw/day의 2.5% 수준으로 이였다.

Keywords

References

  1. Choi, H., & Kim, J. H. (2014). Risk assessment of agricultural worker's exposure to fungicide thiophanatemethyl during treatment in green pepper, cucumber and apple fields. Journal of Applied Biological Chemistry, 57(1), 73-81. https://doi.org/10.3839/jabc.2014.012
  2. Durham, W. F., & Wolfe, H. R. (1962). Measurement of the exposure of workers to pesticides. Bulletin of the World Health Organization, 26(1), 75-91.
  3. EFSA (2011). European Food Safety Authority (EFSA), pp. 71, 9, 1.
  4. Franklin, C., & Worgan, J. (2005). Occupational and residential exposure assessment for pesticides (Vol. 9). John Wiley & Sons, Ltd ISBN, 0-471-48989-1.
  5. Gao, B. B., Tao, C. J., Ye, J. M., Ning, J., Mei, X. D., Jiang, Z. F., Chena, S., & Shea D. M. (2014). Measurement of operator exposure to chlorpyrifos. Pest Management Science, 70(4), 636-641. https://doi.org/10.1002/ps.3601
  6. Grobkopf, C., Mielke, H., Westphal, D., Erdtmann-Vourliotis, M., Hamey, P., Bouneb, F., Rautmann, D., Stauber, F., Wicke, H., Maasfeld, W., Salazar, J. D., Chester, G., & Martin, S. (2013). A new model for the prediction of agricultural operator exposure during professional application of plant protection products in outdoor crops. Journal fur Verbraucherschutz und Lebensmittelsicherheit, 8(3), 143-153. https://doi.org/10.1007/s00003-013-0836-x
  7. Hocking, A. D., Su-lin, L. L., Kazi, B. A., Emmett, R. W., & Scott, E. S. (2007). Fungi and mycotoxins in vineyards and grape products. International Journal of Food Microbiology, 119(1), 84-88. https://doi.org/10.1016/j.ijfoodmicro.2007.07.031
  8. Katinka, V. D. J., Tielemans, E., Links, I., Brouwer, D., & Hemmen, J. V. (2004). Effectiveness of personal protective equipment: Relevance of dermal and inhalation exposure to chlorpyrifos among pest control operators. Journal of Korean Society of Occupational and Environmental Hygiene, 1, 355-362. https://doi.org/10.1080/15459620490449710
  9. Kim, E. H., Hwang, Y. J., Kim, S. H., Lee, H. R., Hong, S. S., Park, K. H., & Kim, J. H. (2012). Operator exposure to indoxacarb wettable powder and water dispersible granule during mixing/loading and risk assessment. Korean Journal of Pesticide Science 16(4), 343-349. https://doi.org/10.7585/kjps.2012.16.4.343
  10. Kim, E. H., Lee, H. R., Jeong, M. H., Hong, S. S., & Kim, J. H. (2012). Hand exposure of operator to chlorpyrifos during mixing/loading and risk assessment. Korean Journal of Pesticide Science, 16(4), 391-394. https://doi.org/10.7585/kjps.2012.16.4.391
  11. Kim, E. H., Moon, J. K., Choi, H., & Kim, J. H. (2015). Probabilistic exposure assessment for applicators during treatment of the fungicide kresoxim-methyl on an apple orchard by a speed sprayer. Journal of Agricultural and Food Chemistry, 63(48), 10366-10371. https://doi.org/10.1021/acs.jafc.5b03217
  12. Lee, C. R., Hong, J. H., Lim, J. S., & Lee, K. S. (2011). Residue Patterns of Azoxystrobin and Cyenopyrafen In Grape between Rainshield and Plastic House Conditions. The Korean Journal of Pesticide Science, 15(2), 97-103.
  13. Tomlin, C. D. S. (2009). The Pesticide Manual, pp. 354-355, 15th, British Crop Production Council, UK.