DOI QR코드

DOI QR Code

Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

  • Choi, Min-Koo (College of Pharmacy, Dankook University) ;
  • Song, Im-Sook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2015.07.01
  • Accepted : 2015.08.20
  • Published : 2016.03.01

Abstract

This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration ($2-75{\mu}M$) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was $1.9{\mu}L/min$ while passive diffusion clearance was $0.31{\mu}L/min$. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as $C_{max}$ and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.

Keywords

References

  1. Bai, F., Wang, C., Lu, Q., Zhao, M., Ban, F. Q., Yu, D. H., Guan, Y. Y., Luan, X., Liu, Y. R., Chen, H. Z. and Fang, C. (2013) Nanoparticlemediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. Biomaterials 34, 6163-6174. https://doi.org/10.1016/j.biomaterials.2013.04.062
  2. Bando, K., Ochiai, S., Kunimatsu, T., Deguchi, J., Kimura, J., Funabashi, H. and Seki, T. (2010) Comparison of potential risks of lactic acidosis induction by biguanides in rats. Regul. Toxicol. Pharmacol. 58, 155-160. https://doi.org/10.1016/j.yrtph.2010.05.005
  3. Bansal, T., Mishra, G., Jaggi, M., Khar, R. K. and Talegaonkar, S. (2009) Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur. J. Pharm. Sci. 36, 580-590. https://doi.org/10.1016/j.ejps.2008.12.005
  4. Chang, W., Zhang, M., Li, J., Meng, Z., Wei, S., Du, H., Chen, L. and Hatch, G. M. (2013) Berberine improves insulin resistance in cardiomyocytes via activation of 5'-adenosine monophosphate-activated protein kinase. Metabolism 62, 1159-1167. https://doi.org/10.1016/j.metabol.2013.02.007
  5. Choi, M. K., Jin, Q. R., Jin, H. E., Shim, C. K., Cho, D. Y., Shin, J. G. and Song, I. S. (2007) Effects of tetraalkylammonium compounds with different affinities for organic cation transporters on the pharmacokinetics of metformin. Biopharm. Drug Dispos 28, 501-510. https://doi.org/10.1002/bdd.576
  6. Choi, M. K., and Song, I. S. (2012) Characterization of efflux transport of the PDE5 inhibitors, vardenafil and sildenafil. J. Pharm. Pharmacol. 64, 1074-1083. https://doi.org/10.1111/j.2042-7158.2012.01498.x
  7. Guest, D., King, L. J., and Parke, D. V. (1979) Metabolism of phenformin in the rat and guinea-pig. Xenobiotica 9, 681-693. https://doi.org/10.3109/00498257909042336
  8. Huang, M., and Liu, G. (1999) The study of innate drug resistance of human hepatocellular carcinoma Bel7402 cell line. Cancer Lett. 135, 97-105.
  9. Kim, H. S., Kim, M. J., Kim, E. J., Yang, Y., Lee, M. S., and Lim, J. S. (2012) Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem. Pharmacol. 83, 385-394. https://doi.org/10.1016/j.bcp.2011.11.008
  10. Kreisberg, R. A., and Wood, B. C. (1983) Drug and chemical-induced metabolic acidosis. Clin. Endocrinol. Metab. 12, 391-411. https://doi.org/10.1016/S0300-595X(83)80048-6
  11. Kwong, S. C., and Brubacher, J. (1998) Phenformin and lactic acidosis: a case report and review. J. Emerg. Med. 16, 881-886. https://doi.org/10.1016/S0736-4679(98)00103-6
  12. Luft, D., Schmulling, R. M., and Eggstein, M. (1978) Lactic acidosis in biguanide-treated diabetics: a review of 330 cases. Diabetologia 14, 75-87. https://doi.org/10.1007/BF01263444
  13. Oliva, P. B. (1969) Phenformin and lactic acidosis. Report of a case and review of the literature. Med. Ann. Dist. Columbia 38, 548-552.
  14. Sirtori, C. R., Franceschini, G., Galli-Kienle, M., Cighetti, G., Galli, G., Bondioli, A., and Conti, F. (1978) Disposition of metformin (N,Ndimethylbiguanide) in man. Clin. Pharmacol. Ther. 24, 683-693. https://doi.org/10.1002/cpt1978246683
  15. Sogame, Y., Kitamura, A., Yabuki, M., and Komuro, S. (2009) A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Biopharm. Drug Dispos. 30, 476-484. https://doi.org/10.1002/bdd.684
  16. Sogame, Y., Kitamura, A., Yabuki, M., and Komuro, S. (2011) Liver uptake of biguanides in rats. Biomed. Pharmacother. 65, 451-455. https://doi.org/10.1016/j.biopha.2011.04.022
  17. Sogame, Y., Kitamura, A., Yabuki, M., Komuro, S., and Takano, M. (2013) Transport of biguanides by human organic cation transporter OCT2. Biomed. Pharmacother. 67, 425-430. https://doi.org/10.1016/j.biopha.2013.02.003
  18. Song, I. S., Choi, M. K., Shim, W. S., and Shim, C. K. (2013) Transport of organic cationic drugs: effect of ion-pair formation with bile salts on the biliary excretion and pharmacokinetics. Pharmacol. Ther. 138, 142-154. https://doi.org/10.1016/j.pharmthera.2013.01.006
  19. Song, N. N., Li, Q. S., and Liu, C. X. (2006) Intestinal permeability of metformin using single-pass intestinal perfusion in rats. World J. Gastroenterol. 12, 4064-4070. https://doi.org/10.3748/wjg.v12.i25.4064
  20. Tucker, G. T., Casey, C., Phillips, P. J., Connor, H., Ward, J. D., and Woods, H. F. (1981) Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol. 12, 235-246. https://doi.org/10.1111/j.1365-2125.1981.tb01206.x
  21. Wang, D. S., Kusuhara, H., Kato, Y., Jonker, J. W., Schinkel, A. H., and Sugiyama, Y. (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 63, 844-848. https://doi.org/10.1124/mol.63.4.844
  22. Wang, F., Zhang, D., Zhang, Q., Chen, Y., Zheng, D., Hao, L., Duan, C., Jia, L., Liu, G., and Liu, Y. (2011) Synergistic effect of folatemediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 32, 9444-9456. https://doi.org/10.1016/j.biomaterials.2011.08.041
  23. Zhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J., and Giacomini, K. M. (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66, 8847-8857. https://doi.org/10.1158/0008-5472.CAN-06-0769

Cited by

  1. Renal Drug Transporters and Drug Interactions vol.56, pp.8, 2017, https://doi.org/10.1007/s40262-017-0506-8
  2. A review of phenformin, metformin, and imeglimin vol.81, pp.4, 2016, https://doi.org/10.1002/ddr.21636