DOI QR코드

DOI QR Code

Experimental and Numerical Study of the Thermal Decomposition of an Epoxy-based Intumescent Coating

실험과 계산을 통한 에폭시 계열 내화도료의 열분해에 관한 연구

  • Kim, Yangkyun (Fire Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 김양균 (한국건설기술연구원 화재안전연구소)
  • Received : 2015.11.16
  • Accepted : 2015.11.24
  • Published : 2016.02.29

Abstract

This study investigates the characteristics of thermal decomposition of an epoxy-based intumescent paint using thermogravimetric analysis (TGA) and numerical simulation. A mathematical and numerical model is introduced to describe mass loss profiles of the epoxy-based intumescent coating induced by the thermal decomposition process. The decomposition scheme covers a range of complexity by employing simplified 4-step sequential reactions to describe the simultaneous thermal decomposition processes. The reaction rates are expressed by the Arrhenius law, and reaction parameters are optimized to fit the degradation behavior seen during thermogravimetric (TG) experiments. The experimental results show a major 2-step degradation under nitrogen and a 3-step degradation in an air environment. The experiment also shows that oxygen takes part in the stabilization of the intumescent coating between 200 and $500^{\circ}C$. The simulation results show that the proposed model effectively predicts the experimental mass loss as a function of time except for temperatures above $800^{\circ}C$, which were intentionally not included in the model. The maximum error in the simulation was less than 3%.

본 연구는 에폭시 계열 내화 도료의 열분해 특성을 파악하기 위해 열중량분석과 수치해석을 동시에 수행하였다. 에폭시 계열 내화 도료의 질량 감소 양상을 수치적으로 구현하기 위한 계산 모델이 소개되었으며, 계산 모델은 내화 도료의 여러 열분해과정을 단순화하여 4 단계의 순차적인 열분해 형태로 만들었다. 반응 속도는 Arrhenious 형태로 모델 되었고, 열중량분석을 통해 획득된 열분해 현상을 수치적으로 모사하기 위하여 화학 반응 매개변수들이 최적화되었다. 실험 결과 두 단계(two-step)와 세 단계(three-step)의 급격한 질량 감소가 질소와 공기 분위기에서 각각 나타났다. 또한 도료가 공기 분위기에 노출되었을 때 산소의 참여로 발생하는 복합적인 화학 반응들이 내화도료의 안정화를 도와 $200{\sim}500^{\circ}C$ 범위에서 질량 감소율을 낮추었다. 수치해석 결과는 실험과 비교하여 전체적으로 잘 일치하였으며 수치 모델에 포함되지 않은 $800^{\circ}C$ 이후를 제외하면 3% 미만의 오차를 보였다.

Keywords

References

  1. CEN. EN 13381-8:2010, "Test Methods for Determining the Contribution to the Fire Resistance of Structural Members. Part 8. Applied Passive Protection Products to Steel Member", London: BSI (2010).
  2. D. E. Cagliostro, S. R. Riccitello, K. L. Clar and A. B. Shimizu, "Intumescent Coating Modelling", Journal of Fire and Flammability, Vol. 6, pp. 205-220 (1975).
  3. F. Zhang, J. Zhang and Y. Wang, "Modeling Study on the Combustion of Intumescent Fire-retardant Polypropylene", Polymer Letter, Vol. 1, No. 3, pp. 157-165 (2007). https://doi.org/10.3144/expresspolymlett.2007.25
  4. F. Zhang, J. Zhang and Y. Wang, "Modeling Study on the Combustion of Intumescent Fire-retardant Polypropylene", Polymer Letter, Vol. 1, No. 3, pp. 157-165 (2007). https://doi.org/10.3144/expresspolymlett.2007.25
  5. C. Di Blasi and C. Branca, "Mathematical Model for the Nonsteady Decomposition of Intumescent Coatings", AICHEJ, Vol. 47, No. 10, pp. 2359-2370 (2001). https://doi.org/10.1002/aic.690471020
  6. C. Di Blasi, "Modeling the Effects of High Radiative Fluxes on Intumescent Material Decomposition", J. Anal. Appl. Pyrolysis, Vol. 8, pp. 721-737 (2004).
  7. S. M. Neininger, J. E. J. Staggs, A. R. Horrocks and N. J. Hill, "A Study of the Global Kinetics of Thermal Degradation of a Fibre-intumescent Mixture", Polymer Degradation and Stability, Vol. 77, pp. 187-194 (2002). https://doi.org/10.1016/S0141-3910(02)00033-2
  8. E. Kandare, B. K. Kandola and J. E. J. Staggs, "Global Kinetics of Thermal Degradation of Flame-retarded Epoxy Resin Formulations", Polymer Degradation and Stability, Vol. 92, pp. 1778-1789 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.011
  9. M. Jimenez, S. Duquesne and S. Bourbigot, "Kinetic Analysis of the Thermal Degradation of an Epoxy-based Intumescent Coating", Polymer Degradation and Stability, Vol. 94, pp. 404-409 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.11.021
  10. Sherwin-Williams, http://www.sherwin-williams.com.
  11. J. A. Conesa, A. Marcilla, J. A. Caballero and R. Font, "Comments on the Validity and Utility of the Different Methods for Kinetic Analysis of Thermogravimetric Data", Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp. 617-633 (2001). https://doi.org/10.1016/S0165-2370(00)00130-3