Abstract. Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(\mathbb{R}R)N$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if $R/P(R)$ is left perfect, where $P(R)$ is the sum of all left ideals I of R such that $\text{Rad} I = I$.

1. Introduction

All rings consider in this paper will be associative with an identity element. Unless otherwise stated, R denotes an arbitrary ring and all modules will be left unitary R-modules. For a module M, by $X \subseteq M$, we mean X is a submodule of M or M is an extension of X. As usual, $\text{Rad} M$ denotes the radical of M and J denotes the Jacobson radical of the ring R. $E(M)$ will be the injective envelope of M. For an index set I, $M(I)$ denotes the direct sum $\bigoplus I M$. By \mathbb{N}, \mathbb{Z} and \mathbb{Q} we denote as usual the set of natural numbers, the ring of integers and the field of rational numbers, respectively. A submodule $K \subseteq M$ is called small in M (denoted by $K \ll M$) if $M \neq K + T$ for every proper submodule T of M. Dually, a submodule $L \subseteq M$ is called essential in M (denoted by $L \triangleleft M$) if $L \cap X \neq 0$ for every nonzero submodule X of M.

The notion of a supplement submodule was introduced in [12] in order to characterize semiperfect modules, that is projective modules whose factor modules have projective cover. For submodules U and V of a module M, V is said to be a supplement of U in M or U is said to have a supplement V in M if $U + V = M$ and $U \cap V \ll V$. The module M is called supplemented if every
submodule of M has a supplement in M. See [19, §41] and [9] for results and the definitions related to supplements and supplemented modules. Recently, several authors have studied different generalizations of supplemented modules. In [1], τ-supplemented modules were defined for an arbitrary preradical τ for the category of left R-modules. For submodules U and V of a module M, V is said to be a τ-supplement of U in M or U is said to have a τ-supplement V in M if $U + V = M$ and $U \cap V \subseteq \tau(V)$. M is called a τ-supplemented module if every submodule of M has a τ-supplement in M. For the particular case $\tau = \text{Rad}$, Rad-supplemented modules have been studied in [6]; rings over which all modules are Rad-supplemented were characterized. Also, in the recent paper [7], the relation between Rad-supplemented modules and local modules have been investigated. See [18]; these modules are called generalized supplemented modules. Note that Rad-supplements V of a module M are also called cocnet submodules which can be characterized by the fact that each module with zero radical is injective with respect to the inclusion $V \subseteq M$; see [1], [9, §10] and [15]. On the other hand, modules that have supplements in every module in which it is contained as a submodule have been studied in [22]; the structure of these modules, which are called modules with the property (E), has been completely determined over Dedekind domains. Such modules are also called Moduln mit Ergänzungseigenschaft in [3] and supplementing modules in [9, p. 255]. We follow the terminology and notation as in [9]. We call a module M supplementing if it has a supplement in each module in which it is contained as a submodule. By considering these modules we define and study (ample) Rad-supplementing modules as a proper generalization of supplementing modules. A module M is called (ample) Rad-supplementing if it has a (an ample) Rad-supplement in each module in which it is contained as a submodule, where a submodule $U \subseteq M$ has ample Rad-supplements in M if for every $L \subseteq M$ with $U + L = M$, there is a Rad-supplement L' of U with $L' \subseteq L$.

In Section 2, we investigate some properties of Rad-supplementing modules. It is clear that every supplementing module is Rad-supplementing, but the converse implication fails to be true; Example 2.3. If a module M has a Rad-supplement in its injective envelope, M need not be Rad-supplementing. However, we prove that M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension; Proposition 2.5. We prove that for modules $A \subseteq B$, if A and B/A are Rad-supplementing, then so is B. Using this fact we also prove that every module with composition series is Rad-supplementing; Theorem 2.12. A factor module of a Rad-supplementing module need not be Rad-supplementing; Example 2.15. For modules $A \subseteq B \subseteq C$ with C/A injective, we prove that if B is Rad-supplementing, then so is B/A. As one of the main results, we prove that R is left perfect if and only if R is semilocal, R is reduced and $(R/(R)^{(N)})$ is Rad-supplementing; Theorem 2.20. Finally, using a result of [22], we show that
over a commutative ring R, a semisimple R-module M is Rad-supplementing if and only if it is supplementing and that is equivalent the fact that M is pure-injective; Theorem 2.21.

Section 3 contains some properties of ample Rad-supplementing modules. It starts by proving a useful property that a module M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing; Proposition 3.1. One of the main results of this part is that R is left perfect if and only if R is reduced and the free left R-module $(R(R)^{(x)})$ is ample Rad-supplementing; Theorem 3.3. In the proof of this result, Rad-supplemented modules plays an important role as, of course, every ample Rad-supplementing module is Rad-supplemented. Finally, using the characterization of Rad-supplemented modules given in [6], we characterize the rings over which every module is (ample) Rad-supplementing. We prove that every left R-module is (ample) Rad-supplementing if and only if every reduced left R-module is Rad-supplementing if and only if $R/P(R)$ is left perfect; Theorem 3.4.

2. Rad-supplementing modules

A module M is called radical if $\text{Rad } M = M$, and M is called reduced if it has no nonzero radical submodule. See [21, p. 47] for details for the notion of reduced and radical modules.

Proposition 2.1. Supplementing modules and radical modules are Rad-supplementing.

Proof. Let M be a module and N be any extension of M. If M is supplementing, then it has a supplement, and so a Rad-supplement in N. Thus M is Rad-supplementing. Now, if $\text{Rad } M = M$, then N is a Rad-supplement of M in N. □

By $P(M)$ we denote the sum of all radical submodules of the module M, that is,

$$P(M) = \sum\{U \subseteq M \mid \text{Rad } U = U\}.$$

Clearly M is reduced if $P(M) = 0$.

Since $P(M)$ is a radical submodule of M we have the following corollary.

Corollary 2.2. For a module M, $P(M)$ is Rad-supplementing.

A subset I of a ring R is said to be left T-nilpotent in case, for every sequence $\{a_k\}_{k=1}^{\infty}$ in I, there is a positive integer n such that $a_1 \cdots a_n = 0$.

In general, Rad-supplementing modules need not be supplementing as the following example shows.

Example 2.3. Let k be a field. In the polynomial ring $k[x_1, x_2, \ldots]$ with countably many indeterminates x_n, $n \in \mathbb{N}$, consider the ideal $I = (x_1^2, x_2^2 - x_1, x_3^2 - x_2, \ldots)$ generated by x_1^2 and $x_n^2 - x_n$ for each $n \in \mathbb{N}$. Then the quotient ring $R = k[x_1, x_2, \ldots]/I$ is a local ring with the unique maximal ideal
\[J = J^2 \] (see [6, Example 6.2] for details). Now let \(M = J^{(N)} \). Then we have \(\text{Rad} \, M = M \), and so \(M \) is Rad-supplementing by Proposition 2.1. However, \(M \) does not have a supplement in \(R^{(N)} \). Because, otherwise, by [5, Theorem 1], \(J \) would be a left \(T \)-nilpotent as \(R \) is semilocal, but this is impossible. Thus \(M \) is not supplementing.

For instance, over a left max ring, supplementing modules and Rad-supplementing modules coincide, where \(R \) is called a left max ring if every left \(R \)-module has a maximal submodule or equivalently, \(\text{Rad} \, M \ll M \) for every left \(R \)-module \(M \).

Proposition 2.4. Every direct summand of a Rad-supplementing module is Rad-supplementing.

Proof. Let \(U \) be a direct summand of a Rad-supplementing module \(M \), and let \(N \) be any extension of \(U \). Then \(M = A \oplus U \) for some submodule \(A \subseteq M \). By hypothesis \(M \) has a Rad-supplement in the module \(A \oplus N \) containing \(M \), that is, there exists a submodule \(V \) of \(A \oplus N \) such that
\[
(A \oplus U) + V = A \oplus N \quad \text{and} \quad (A \oplus U) \cap V \subseteq \text{Rad} \, V.
\]
Now, let \(g : A \oplus N \to N \) be the projection onto \(N \). Then
\[
U + g(V) = g(A \oplus U) + g(V) = g((A \oplus U) + V) = g(A \oplus N) = N, \quad \text{and}
\]
\[
U \cap g(V) = g((A \oplus U) \cap V) \subseteq g(\text{Rad} \, V) \subseteq \text{Rad}(g(V)).
\]
Hence \(g(V) \) is a Rad-supplement of \(U \) in \(N \). \(\square \)

If a module \(M \) has a Rad-supplement in its injective envelope \(E(M) \), \(M \) need not be Rad-supplementing. For example, for \(R = \mathbb{Z} \), the \(R \)-module \(M = 2\mathbb{Z} \) has a Rad-supplement in \(E(M) = \mathbb{Q} \) since \(\text{Rad} \, \mathbb{Q} = \mathbb{Q} \) (and so \(\mathbb{Q} \) is Rad-supplemented). But, \(M \) does not have a Rad-supplement in \(\mathbb{Z} \), and thus \(M \) is not Rad-supplementing. However, we have the following result.

Proposition 2.5. Let \(M \) be a module. Then the following are equivalent.

(i) \(M \) has a Rad-supplement in every essential extension;
(ii) \(M \) has a Rad-supplement in its injective envelope \(E(M) \).

Proof. (i)\(\Rightarrow \) (ii) is clear.

(ii)\(\Rightarrow \) (i) Let \(M \subseteq N \) with \(M \triangleleft N \), and let \(f : M \to N \) and \(g : M \to E(M) \) be inclusion maps. Then we have the following commutative diagram with \(h \) necessarily monic:

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow{g} & & \downarrow{h} \\
E(M) & & \\
\end{array}
\]

By hypothesis, \(M \) has a Rad-supplement in \(E(M) \), say \(K \). That is, \(M + K = E(M) \) and \(M \cap K \subseteq \text{Rad} \, K \). Since \(M \subseteq h(N) \), we obtain that \(h(N) = \)
$h(N) \cap E(M) = h(N) \cap (M + K) = M + h(N) \cap K$. Now, taking any $n \in N$, we have $h(n) = m + h(n_1) = h(m + n_1)$ where $m \in M$ and $h(n_1) \in h(N) \cap K$. So, $n = m + n_1 \in M + h^{-1}(K)$ since h is monic, and so $M + h^{-1}(K) = N$. Moreover, $M \cap h^{-1}(K) = h^{-1}(M \cap K) \subseteq h^{-1}(\text{Rad}(K)) \subseteq \text{Rad}(h^{-1}(K))$ since $h^{-1}(M) = M$ as h is monic. Hence $h^{-1}(K)$ is a Rad-supplement of M in N.

Proposition 2.6. Let B be a module, and let A be a submodule of B. If A and B/A are Rad-supplementing, then so is B.

Proof. Let $B \subseteq N$ be any extension of B. By hypothesis, there is a Rad-supplement V/A of B/A in N/A and a Rad-supplement W of A in V. We claim that W is a Rad-supplement of B in N. We have epimorphisms $f : W \to V/A$ and $g : V/A \to N/B$ such that $\text{Ker} f = W \cap A \subseteq \text{Rad} W$ and $\text{Ker} g = V/A \cap B/A \subseteq \text{Rad}(V/A)$. Then $g \circ f : W \to N/B$ is an epimorphism such that $W \cap B = \text{Ker}(g \circ f) \subseteq \text{Rad} W$ by [20, Lemma 1.1]. Finally, $N = V + B = (W + A) + B = W + B$. □

Remark 2.7. The previous result holds for supplementing modules; see [22, Lemma 1.3-(c)].

Corollary 2.8. If M_1 and M_2 are Rad-supplementing modules, then so is $M_1 \oplus M_2$.

Proof. Consider the short exact sequence

$$0 \to M_1 \to M_1 \oplus M_2 \to M_2 \to 0.$$

Thus the result follows by Proposition 2.6. □

R is said to be a *left hereditary* ring if every left ideal of R is projective.

Corollary 2.9. If $M/P(M)$ is Rad-supplementing, then M is Rad-supplementing. For left hereditary rings, the converse is also true.

Proof. Since $P(M)$ is Rad-supplementing by Corollary 2.2, the result follows by Proposition 2.6. Over left hereditary rings, any factor module of a Rad-supplementing module is Rad-supplementing (see Corollary 2.18). □

We give the proof of the following known fact for completeness.

Lemma 2.10. Every simple submodule S of a module M is either a direct summand of M or small in M.

Proof. Suppose that S is not small in M, then there exists a proper submodule K of M such that $S + K = M$. Since S is simple and $K \neq M$, $S \cap K = 0$. Thus $M = S \oplus K$. □

Proposition 2.11. Every simple module is (Rad-)supplementing.
Proof. Let \(S \) be a simple module and \(N \) any extension of \(S \). Then by Lemma 2.10, \(S \ll N \) or \(S \oplus S' = N \) for a submodule \(S' \subseteq N \). In the first case, \(N \) is a (Rad-)supplement of \(S \) in \(N \), and in the second case, \(S' \) is a (Rad-)supplement of \(S \) in \(N \). So, in each case \(S \) has a (Rad-)supplement in \(N \), that is, \(S \) is (Rad-)supplementing. \(\square \)

Theorem 2.12. Every module with composition series is (Rad-)supplementing.

Proof. Let \(0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n = M \) be a composition series of a module \(M \). The proof is by induction on \(n \in \mathbb{N} \). If \(n = 1 \), then \(M = M_1 \) is simple, and so \(M \) is (Rad-)supplementing by Proposition 2.11. Suppose that this is true for each \(k \leq n - 1 \). Then \(M_{n-1} \) is (Rad-)supplementing.

Since \(M_n/M_{n-1} \) is also (Rad-)supplementing as a simple module, we obtain by Proposition 2.6 that \(M = M_n \) is (Rad-)supplementing. \(\square \)

Corollary 2.13. A finitely generated semisimple module is (Rad-)supplementing.

In general, a factor module of a Rad-supplementing module need not be Rad-supplementing. To give such a counterexample we need the following result.

\(R \) is called Von Neumann regular if every element \(a \in R \) can be written in the form \(axa \), for some \(x \in R \).

Proposition 2.14. Let \(R \) be a commutative Von Neumann regular ring. Then an \(R \)-module \(M \) is Rad-supplementing if and only if \(M \) is injective.

Proof. Suppose that \(M \) is a Rad-supplementing module. Let \(M \subseteq N \) be any extension of \(M \). Then there is a Rad-supplement \(V \) of \(M \) in \(N \), that is, \(V + M = N \) and \(V \cap M \subseteq \text{Rad} V \). Since all \(R \)-modules have zero radical by [13, 3.73 and 3.75], we have \(\text{Rad} V = 0 \), and so \(N = V \oplus M \). Conversely, if \(M \) is injective and \(M \subseteq N \) is any extension of \(M \), then \(N = M \oplus K \) for some submodule \(K \subseteq N \). Thus \(K \) is a Rad-supplement of \(M \) in \(N \). \(\square \)

It is known that a ring \(R \) is lefty hereditary if and only if every quotient of an injective \(R \)-module is injective (see [8, Ch.I, Theorem 5.4]).

Example 2.15. Let \(R = \prod_{i \in I} F_i \) be a ring, where each \(F_i \) is a field for an infinite index set \(I \). Then \(R \) is a commutative Von Neumann regular ring. Indeed, let \(a = (a_i)_{i \in I} \in R \) where \(a_i \in F_i \) for all \(i \in I \). Taking \(b = (b_i)_{i \in I} \in R \) where \(b_i \in F_i \) such that

\[
 b_i = \begin{cases}
 a_i^{-1} & \text{if } a_i \neq 0, \\
 0 & \text{if } a_i = 0.
 \end{cases}
\]

Then we obtain that

\[
 aba = (a_i)(b_i)(a_i) = (a_i b_i a_i)_{i \in I} = (a_i)_{i \in I} = a.
\]

Now, by Proposition 2.14, \(R \) is a Rad-supplementing module over itself since it is injective (see [13, Corollary 3.11B]). Since \(R \) is not noetherian, it cannot be
semisimple (by [14, Corollary 2.6]). Thus \(R \) is not hereditary by [16, Corollary]. Hence, there is a factor module of \(R \) which is not injective.

The following technical lemma will be useful to show that Rad-supplementing modules are closed under factor modules, under a special condition.

Lemma 2.16. Let \(A \subseteq B \subseteq C \) be modules with \(C/A \) injective. Let \(N \) be a module containing \(B/A \). Then there exists a commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \to & A & \to & B & \to & B/A & \to & 0 \\
& & id & & \downarrow & & \downarrow & & \\
0 & \to & A & \to & P & \to & N & \to & 0 \\
\end{array}
\]

Proof. By pushout we have the following commutative diagram, where \(\varphi \) exists since \(C/A \) is injective:

\[
\begin{array}{ccccccccc}
0 & \to & B/A & \to & N & \to & N/(B/A) & \to & 0 \\
& & \downarrow(1) & & \downarrow g & & \downarrow(2) & & id \\
0 & \to & C/A & \to & N' & \to & N/(B/A) & \to & 0 \\
\end{array}
\]

In the diagram, since the triangle-(1) is commutative, there exists a homomorphism \(\alpha : N/(B/A) \to N' \) making the triangle-(2) is commutative by [11, Lemma I.8.4]. So, the second row splits. Then we can take \(N' = (C/A) \oplus (N/(B/A)) \), and so we may assume that \(\beta : C/A \to N' \) is an inclusion. Therefore, we have the following commutative diagram since \(B/A = \beta(B/A) = g(B/A) \subseteq N' \):

\[
\begin{array}{ccccccccc}
0 & \to & A & \to & B & \to & B/A & \to & 0 \\
& & id & & \downarrow \phi & & \downarrow & & \\
0 & \to & A & \to & C \oplus (N/(B/A)) & \to & N' & \to & 0 \\
\end{array}
\]

where \(\gamma(a) = (a, 0) \) for every \(a \in A \), \(\phi(b) = (b, 0) \) for every \(b \in B \), and \(\sigma(c, \overline{\tau}) = (c + A, \overline{\tau}) \) for every \(c \in C \) and \(\overline{\tau} \in N/(B/A) \). Finally, taking \(P = \sigma^{-1}(g(N)) \) and defining a homomorphism \(\tilde{\sigma} : P \to g(N) \) by \(\tilde{\sigma}(x) = \sigma(x) \) for every \(x \in P \) (in fact, \(\tilde{\sigma} \) is an epimorphism as so is \(\sigma \)), we obtain the following desired commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \to & A & \to & B & \to & B/A & \to & 0 \\
& & id & & \downarrow & & \downarrow & & \\
0 & \to & A & \to & P & \to & g(N) \cong N & \to & 0 \\
\end{array}
\]

\[\Box \]

Proposition 2.17. Let \(A \subseteq B \subseteq C \) with \(C/A \) injective. If \(B \) is Rad-supplementing, then so is \(B/A \).
Proof. Let $B/A \subseteq N$ be any extension of B/A. By Lemma 2.16, we have the following commutative diagram with exact rows since C/A is injective:

$$
\begin{array}{cccccc}
0 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & B/A & \longrightarrow & 0 \\
0 & \downarrow{id} & \downarrow{h} & \downarrow{f} & & & & & \\
0 & \longrightarrow & A & \longrightarrow & P & \longrightarrow & N & \longrightarrow & 0 \\
\end{array}
$$

Since h is monic and B is Rad-supplementing, $B \cong \text{Im } h$ has a Rad-supplement in P, say V. That is, $\text{Im } h + V = P$ and $\text{Im } h \cap V \subseteq \text{Rad } V$. We claim that $g(V)$ is a Rad-supplement of B/A in N.

$$
N = g(P) = g(h(B)) + g(V) = (f \sigma)(B) + g(V) = (B/A) + g(V), \quad \text{and}
$$

$$(B/A) \cap g(V) = f(\sigma(B)) \cap g(V) = g[h(B)] \cap V \subseteq g(\text{Rad } V) \subseteq \text{Rad}(g(V)). \Box
$$

Corollary 2.18. If R is a left hereditary ring, then every factor module of Rad-supplementing module is Rad-supplementing.

Proposition 2.19. If M is a reduced, projective and Rad-supplementing module, then $\text{Rad } M \ll M$.

Proof. Suppose $X + \text{Rad } M = M$ for a submodule X of M. Then since M is projective, there exists $f \in \text{End}(M)$ such that $\text{Im } f \subseteq X$ and $\text{Im } (1 - f) \subseteq \text{Rad } M = JM$ where J is a Jacobson radical of R. Therefore f is a monomorphism by [4, Theorem 3]. Since M is Rad-supplementing and $\text{Im } f \cong M$, if f has a Rad-supplement V in M, that is, $\text{Im } f + V = M$ and $\text{Im } f \cap V \subseteq \text{Rad } V$. Now we have an epimorphism $g : V \rightarrow M/\text{Im } f$ such that $\text{Ker } g = V \cap \text{Im } f \subseteq \text{Rad } V$. Moreover, since $M = \text{Im } f + \text{Im } (1 - f) = \text{Im } f + \text{Rad } M$ we have $\text{Rad } (M/\text{Im } f) = M/\text{Im } f$. Thus $\text{Rad } V = V$, and so $V = 0$ since M is reduced. Hence $M = \text{Im } f \subseteq X$ implies that $X = M$ as required. \Box

R is said to be a semilocal ring if R/J is a semisimple ring, that is a left (and right) semisimple R-module (see [14, §20]).

Theorem 2.20. A ring R is left perfect if and only if R is semilocal, rR is reduced and the free left R-module $F = (rR)^{(0)}$ is Rad-supplementing.

Proof. If R is left perfect, then R is semilocal by [2, 28.4], and clearly rR is reduced. Since all left R-modules are supplemented and so Rad-supplemented, F is Rad-supplementing. Conversely, since $P(rR) = 0$ we have $P(F) = (P(rR))^{(0)} = 0$, that is, F is reduced. Thus by Proposition 2.19, $JF = \text{Rad } F \ll F$, that is, J is left T-nilpotent by, for example, [2, 28.3]. Hence R is left perfect by [2, 28.4] since it is moreover semilocal. \Box

Supplementing modules over commutative noetherian rings have been studied in [3]; the author showed that if a module M is supplementing, then it is cotorsion, that is, $\text{Ext}_1^R(F, M) = 0$ for every flat module F (see [10] for cotorsion modules). So the question was raised When Rad-supplementing modules
are cotorsion? Since any pure-injective module is cotorsion, the following result gives an answer of the question for a semisimple module over a commutative ring. The relation between (Rad-)supplementing modules and cotorsion modules needs to be further investigated.

The part (iii)⇒(i) of the proof of the following theorem follows from [22, Theorem 1.6-(ii)⇒(i)], but we give it by explanation for completeness.

Theorem 2.21. Let \(R \) be a commutative ring. Then the following are equivalent for a semisimple \(R \)-module \(M \).

(i) \(M \) is supplementing;

(ii) \(M \) is Rad-supplementing;

(iii) \(M \) is pure-injective.

Proof. (i)⇒(ii) is clear.

(ii)⇒(iii) Let \(M \subseteq N \) be a pure extension of \(M \). By hypothesis \(M \) has a Rad-supplement \(V \) in \(N \), that is, \(M + V = N \) and \(M \cap V \subseteq \text{Rad } V \). Since \(M \) is pure in \(N \), we have \(\text{Rad } M = M \cap \text{Rad } N \) (as \(R \) is commutative). Thus \(M \cap V \subseteq M \cap \text{Rad } N = \text{Rad } M = 0 \) as \(M \) is semisimple. Hence \(N = M \oplus V \) as required.

(iii)⇒(i) Let \(M \subseteq N \) be any extension of \(M \). Then the factor module \(X = (M + \text{Rad } N)/\text{Rad } N \) of \(M \) is again semisimple and pure-injective. Since semisimple submodules are pure in every module with zero radical and \(\text{Rad } (N/\text{Rad } N) = 0 \), it follows that \(X \) is a direct summand of \(N/\text{Rad } N \). Now let

\[
(V/\text{Rad } N) \oplus X = N/\text{Rad } N
\]

for a submodule \(V \subseteq N \) such that \(\text{Rad } N \subseteq V \). So we have \(V + M = N \) with \(V \) minimal, and thus \(V \) is a supplement of \(M \) in \(N \). This is because, if \(T + M = N \) for a submodule \(T \) of \(N \) with \(T \subseteq V \), then from

\[
\text{Rad } (N/T) = \text{Rad } ((M + T)/T) = \text{Rad } (M/M \cap T) = 0
\]
as \(M/M \cap T \) is semisimple, we obtain that \(\text{Rad } N \subseteq T \). Moreover, since

\[
\text{Rad } N = V \cap (M + \text{Rad } N) = V \cap M + \text{Rad } N,
\]
we have \(V \cap M \subseteq \text{Rad } N \) and \(V = T + V \cap M \subseteq T + \text{Rad } N = T \), thus \(T = V \).

\(\square \)

3. Ample Rad-supplementing modules

The following useful result gives a relation between Rad-supplementing modules and ample Rad-supplementing modules.

Proposition 3.1. A module \(M \) is ample Rad-supplementing if and only if every submodule of \(M \) is Rad-supplementing.

Proof. \((\Leftarrow) \) Let \(M \) be a module and \(N \) be any extension of \(M \). Suppose that for a submodule \(X \subseteq N \), \(X + M = N \). By hypothesis the submodule \(X \cap M \) of \(M \) has a Rad-supplement \(V \) in \(X \) containing \(X \cap M \), that is, \((X \cap M) + V = X \) and
(X ∩ M) ∩ V ⊆ \text{Rad} V. Then \(N = M + X = M + (X ∩ M) + V = M + V \) and,
\(M \cap V = M \cap (V \cap X) = (X ∩ M) \cap V \subseteq \text{Rad} V \). Hence \(V \) is a Rad-supplement of \(M \) in \(N \) such that \(V \subseteq X \).

\((⇒)\) Let \(U \) be a submodule of \(M \) and \(N \) be any module containing \(U \). Thus we can draw the pushout for the inclusion homomorphisms \(i_1 : U \hookrightarrow N \) and
\(i_2 : U \hookrightarrow M \):

\[
\begin{array}{c}
\text{M} \xrightarrow{i_1} F \xrightarrow{i_2} \text{N} \\
\text{U} \xrightarrow{\alpha} F \xrightarrow{\beta} \text{N}
\end{array}
\]

In the diagram, \(\alpha \) and \(\beta \) are also monomorphisms by the properties of pushout (see, for example, [17, Exercise 5.10]). Let \(M' = \text{Im} \alpha \) and \(N' = \text{Im} \beta \). Then \(F = M' + N' \) by the properties of pushout. So by hypothesis, \(M' \cong M \)
has a Rad-supplement \(V \) in \(F \) such that \(V \subseteq N' \), that is, \(M' + V = F \) and
\(M' \cap V \subseteq \text{Rad} V \). Therefore \(V \) is a Rad-supplement of \(M' \cap N' \) in \(N' \), because
\(N' = N' \cap F = N' \cap (M' + V) = (M' \cap N') + V \) and \((M' \cap N') \cap V = M' \cap V \subseteq \text{Rad} V \). Now, we claim that \(\beta^{-1}(V) \) is a Rad-supplement of \(U \) in \(N \).
Since \(\beta : N \to F \) is a monomorphism with \(N' = \text{Im} \beta \), we have an isomorphism
\(\tilde{\beta} : N \to N' \) defined as \(\tilde{\beta}(x) = \beta(x) \) for all \(x \in N \). By this isomorphism, since \(V \) is a Rad-supplement of \(M' \cap N' \) in \(N' \), we obtain \(\tilde{\beta}^{-1}(V) \) is a Rad-supplement of
\(\tilde{\beta}^{-1}(M' \cap N') \) in \(\tilde{\beta}^{-1}(N') \). Since it can be easily shown that \(\tilde{\beta}^{-1}(V) = \beta^{-1}(V) \),
\(\tilde{\beta}^{-1}(N') = N \), and \(\tilde{\beta}^{-1}(M' \cap N') = U \) the result follows. \(\Box \)

Corollary 3.2. Every ample Rad-supplementing module is both Rad-supplementing and Rad-supplemented.

Theorem 3.3. A ring \(R \) is left perfect if and only if \(_RR \) is reduced and the free left \(R \)-module \(F = (_RR)^{[N]} \) is ample Rad-supplementing.

Proof. If \(R \) is left perfect, then \(_RR \) is reduced and all left \(R \)-modules are supplemented, and so Rad-supplemented. Thus every submodule of \(F \) is Rad-supplementing. Hence \(F \) is ample Rad-supplementing by Proposition 3.1. Conversely, if \(F \) is ample Rad-supplementing, then it is Rad-supplemented by Corollary 3.2, and so \(R \) is left perfect by [6, Theorem 5.3]. \(\Box \)

Finally, we give the characterization of the rings over which every module is (ample) Rad-supplementing.

Theorem 3.4. For a ring \(R \), the following are equivalent:

(i) Every left \(R \)-module is Rad-supplementing;
(ii) Every reduced left \(R \)-module is Rad-supplementing;
(iii) Every left \(R \)-module is ample Rad-supplementing;
(iv) Every left \(R \)-module is Rad-supplemented;
(v) \(R/P(R) \) is left perfect.
Proof. Let M be a module. (i)\Rightarrow(ii) is clear.

(ii)\Rightarrow(i) Since $M/P(M)$ is reduced, it is Rad-supplementing by hypothesis. So M is Rad-supplementing by Corollary 2.9.

(i)\Rightarrow(iii) Since every submodule of M is Rad-supplementing, M is ample Rad-supplementing by Proposition 3.1.

(iii)\Rightarrow(iv) by Corollary 3.2.

(iv)\Rightarrow(i) Let $M \subseteq N$ be any extension of M. By hypothesis, N is Rad-supplemented, and so M has a Rad-supplement in N.

(iv)\Leftrightarrow(v) by [6, Theorem 6.1].

Acknowledgements. The author would like to thank Engin Büyükaşik for making valuable suggestions about this work and the referee for carefully reading the paper.

References

Department of Mathematics
Faculty of Sciences
Dokuz Eylül University
Buca, İzmir, 35390, Turkey
E-mail address: salahattin.ozdemir@deu.edu.tr