DOI QR코드

DOI QR Code

강릉지역의 일조시간과 강수량 관측자료를 이용한 월평균 일사량 추정

The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region

  • 안서희 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 이동건 (강릉원주대학교 대기환경과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Ahn, Seo-Hee (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Dong-Geon (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2016.01.14
  • 심사 : 2016.02.05
  • 발행 : 2016.02.29

초록

본 연구는 일조시간과 강수량 자료를 이용하여 다중회귀 방법을 통해 일사량을 추정하였다. 연구에 사용된 자료들은 강릉지역에 위치한 강원지방기상청(105 관측소, 1980-2007)과 신강원지방기상청(104 관측소, 2009-2014) 그리고 강릉원주대학교(GWNU 관측소, 2013-2014)이며, 105 관측소 자료를 통해 산출된 회귀식을 104 관측소와 GWNU 관측소에 적용하여 비교분석하였다. 먼저, 일조시간만을 이용하였을 때 104 관측소는 기존 연구들과 유사한 상관계수(0.96)와 표준오차($1.16MJm^{-2}$)가 나타났고, GWNU 관측소에서는 높은 상관계수(0.99)와 낮은 표준오차($0.57MJm^{-2}$)로 분석되었다. 그리고 일조시간과 강수량 자료를 104 관측소에 적용하였을 때 상관계수 0.96과 표준오차 $0.99MJm^{-2}$로 일조시간만을 적용했을 때보다 표준오차가 감소되었다. 일조시간만을 이용한 방법보다 강수량이 추가된 방법은 관측 일사량과 편차의 극값이 -26.6%(2010년 3월)에서 -31.0%(2011년 2월)로 증가되었다. 이는 강수량이 5월과 7-9월에 집중되어 나타나 이외의 월에서 추정식의 계수가 음으로 계산되었기 때문으로 분석된다. 따라서 한반도와 같이 강수량이 여름철에 집중되는 지역에서는 월평균 강수량을 일사량 추정에 이용할 때 주의를 기울여야 할 것이다.

In this study, we estimated solar radiation by multiple regression analysis using sunshine duration and precipitation data, which are highly correlated to solar radiation. We found the regression equation using data obtained from GROM (Gangwon Regional Office of Metrology, station 105, 1980-2007) located in Gangneung, South Korea and validated the equation by applying data obtained from new GROM (newly relocated, station 104, 2009-2014) and data obtained from GWNU (Gangneung-Wonju National University, 2013-2014) located between stations 104 and 105. By using sunshine duration data alone, the estimation using data from station 104 resulted in a correlation coefficient of 0.96 and a standard error of $1.16MJm^{-2}$, which was similar to the previous results; the estimation using data from GWNU yielded better results with a correlation coefficient of 0.99 and a standard error of $0.57MJm^{-2}$. By using sunshine duration and precipitation data, the estimation (using data from station 104) yielded a correlation coefficient of 0.96 and a standard error of $0.99MJm^{-2}$, resulting in a lower standard error compared to what was obtained using sunshine duration data alone. The maximum solar radiation bias increased from -26.6% (March 2013) to -31.0% (February 2011) when both sunshine duration and precipitation data were incorporated into the estimation rather than when sunshine duration data alone was incorporated. This was attributed to the concentrated precipitation found during May and July-September, which resulted in negative coefficients of the estimating equation in other months. Therefore, the monthly average solar radiation should be estimated carefully when employing the monthly average precipitation for those places where precipitation is concentrated during summer, such as the Korean peninsula.

키워드

참고문헌

  1. Aksoy, B., Ruen, S.E., and Akinolu, B.G., 2011, A simple correlation to estimate global solar irradiation on a horizontal surface using METEOSAT satellite images. Turkish Journal of Engineering and Environmental Sciences, 35, 125-137.
  2. Almorox, J. and Hontoria, C., 2004, Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45, 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022
  3. Bakirci, K., 2009, Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy, 34, 485-501. https://doi.org/10.1016/j.energy.2009.02.005
  4. Chegaar, M. and Chibani, A., 2001, Global solar radiation estimation in Algeria. Energy Conversion and Management, 42, 967-973. https://doi.org/10.1016/S0196-8904(00)00105-9
  5. Choi, H., 2008, Comparison of PM1, PM2.5 and PM10 Concentrations in a Mountainous Coastal City, gangneung Before and After the Yellow Dust Event in Spring. Journal of the Environmental Sciences, 17(6), 633-645. (in Korean) https://doi.org/10.5322/JES.2008.17.6.633
  6. El-Metwally, M., 2004, Simple new methods to estimate global solar radiation based on meteorological data in Egypt. Atmospheric Research, 69, 217-239. https://doi.org/10.1016/j.atmosres.2003.09.002
  7. El-Sebaii, A.A. and Trabea, A.A., 2005, Estimating global solar radiation on horizontal surfaces over Egypt. Egyptian Journal of Solids, 28, 163-175.
  8. El-Sebaii, A.A., Al-Ghamdi, A.A., Al-Hazmi, F.S., and Faidah, A.S., 2009, Estimation of global solar radiation on horizontal surfaces in Jeddah. Energy Policy, 37, 3645-3649. https://doi.org/10.1016/j.enpol.2009.04.038
  9. EPIA, 2012, Connecting the Sun: Solar Photovoltaics on the road to large-scale grid integration. Full Report, Belgium.
  10. George, R. and Maxwell, E., 1999, High-resolution maps of solar collector performance using a climatological solar radiation model. Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, Maine, 243-248.
  11. Gopinathan, K.K., 1988, A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy, 41, 499-502. https://doi.org/10.1016/0038-092X(88)90052-7
  12. Gungor, A. and Yildirim, U., 2012, Global solar radiation estimation using sunshine duration in Nigde. 16th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology", Dubai, UAE.
  13. Halouani, N., Nguyen, C.T., and Vo-Ngoc, D., 1993, Calculation of monthly average global solar radiation on horizontal surfaces using daily hours of bright sunshine. Solar Energy, 50, 247-258. https://doi.org/10.1016/0038-092X(93)90018-J
  14. IEA, 2011, Trends in Photovoltaic Applications-Survey report of selected IEA countries between 1992 and 2011. Report IEA-PVPS T1-21.
  15. IPCC, 2013, Summary for policymakers. In: Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  16. Jacovides, C.P., Tymvios, F.S., Assimakopoulos, V.D., and Kaltsounides, N.A., 2006, Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation. Renewable Energy, 31, 2492-2504. https://doi.org/10.1016/j.renene.2005.11.009
  17. Jee, J.B., Lee, W.H., Zo, I.S., and Lee, K.T., 2011a, Correction of One-layer Solar Radiation Model by Multi-layer Line-by-Line Solar Radiation Model. Atmosphere, 21(2), 151-162. (in Korean)
  18. Jee, J.B., Kim, Y.D., Lee, W.H., and Lee, K.T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal Korean Earth Science Society, 31(7), 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  19. Jee, J.B., Jeon, S.H., Choi, Y.J., Lee, S.W., Park, Y.S., and Lee, K.T., 2012, The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data. Journal Korean Earth Science Society, 33(2), 139-147. (in Korean) https://doi.org/10.5467/JKESS.2012.33.2.139
  20. Jee, J.B., Zo, I.S., Lee, K.T., and Choi, Y.J., 2011b, Distribution of Photovoltaic Energy Including Topography Effect. Journal Korean Earth Science Society, 32(2), 190-199. (in Korean) https://doi.org/10.5467/JKESS.2011.32.2.190
  21. Jee, J.B., Zo, I.S., and Lee, K.T., 2013, A study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites. Korean Journal of Remote Sensing, 29(1), 123-135. (in Korean) https://doi.org/10.7780/kjrs.2013.29.1.12
  22. Jin, Z., Yezheng, W., and Gang, Y., 2005, General formula for estimation of monthly average daily global solar radiation in China. Energy Conversion and Management, 46, 257-268. https://doi.org/10.1016/j.enconman.2004.02.020
  23. Jo, D.K., Yun, C.Y., Kim, K.D., and Kang, Y.H., 2011, A study on the Estimating Solar Radiation Using Hours of Bright Sunshine for the Installation of Photovoltaic System in Korea. Journal of the Korean Solar Energy Society, 31(4), 72-79. (in Korean)
  24. Kerschgens, M., Pilz, U., Raschke, E., 1978, A modified twostream approximation for computations of the solar radiation budget in a cloudy atmosphere, Tellus, 30, 429-435.
  25. Medugu, D.W., Adisa, A.B., Burari, F.W., and Abdul'Azeez, M.A., 2013, Solar radiation: Correlation between measured and predicted values in Mubi, Nigeria. International Journal of Science and Technology Education Research, 5, 11-17.
  26. Ogelman, H., Ecevit, A., and Tasdemiroglu, E., 1984. A new method for estimating solar radiation from bright sunshine data. Solar Energy, 33, 619-625. https://doi.org/10.1016/0038-092X(84)90018-5
  27. Park, K.J., Kim, H.A., Kim, K.R., Oh, J.W., Lee, S.Y., and Choi, Y.J., 2008, Characteristics of Regional Distribution of Pollen Concentration in Korean Peninsula, Korean Journal of Agricultural and Forest Meteorology, 10(4), 167-176. (in Korean) https://doi.org/10.5532/KJAFM.2008.10.4.167
  28. Preze, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., and Vignola, F., 2002, A new operational model for satellite-derived irradiances: Description and validation. Solar Energy, 73, 307-317. https://doi.org/10.1016/S0038-092X(02)00122-6
  29. Prescott, J.A., 1940, Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of Australia, 46, 114-118.
  30. Sabziparavar, A.A. and Shetaee, H., 2007, Estimation of global solar radiation in arid and semi-arid climates of east and west Iran. Energy, 32, 649-655. https://doi.org/10.1016/j.energy.2006.05.005
  31. Supit, I. and Van Kappel, R.R., 1998, A simple method to estimate global radiation. Solar Energy, 63, 147-160. https://doi.org/10.1016/S0038-092X(98)00068-1
  32. Zhao, N., Zeng, X., and Han, S., 2013, Solar radiation estimation using sunshine hour and air pollution index in China. Energy conversion and management, 76, 846-851. https://doi.org/10.1016/j.enconman.2013.08.037
  33. Zo, I.S., Jee, J.B., Lee, W.H., Lee, K.T., and Choi, Y.J., 2010, Distribution of Surface Solar Radiation by Radiative Model in South Korea. Climate Change Research, 1, 147-159. (in Korean)
  34. Zo, I.S., Jee, J.B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) Onelayer Transfer Model for Calculation of Solar Radiation Distribution of the Korea Peninsula. Asia-Pacific Journal Science, 50(1), 575-584. https://doi.org/10.1007/s13143-014-0047-0

피인용 문헌

  1. Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.228