DOI QR코드

DOI QR Code

고등학교 지구과학 교과서에 제시된 판 이동의 주된 원동력에 대한 고찰

A Study on the Dominant Driving Force of Plate Movement presented in the High School Earth Science Textbooks

  • 전태환 (서울대학교 지구과학교육과) ;
  • 서기원 (서울대학교 지구과학교육과) ;
  • 이규호 (경인교육대학교 과학교육과)
  • Jeon, Taehwan (Department of Earth Science Education, Seoul National University) ;
  • Seo, Ki-Weon (Department of Earth Science Education, Seoul National University) ;
  • Lee, Gyuho (Department of Science Education, Gyeongin Notional University of Education)
  • 투고 : 2016.01.28
  • 심사 : 2016.02.24
  • 발행 : 2016.02.29

초록

초기의 판 구조론에서 지각 판은 연약권 위에 떠서 맨틀의 움직임에 따라 움직이는 수동적인 모습으로 그려졌고, 자연히 해령에서 발산되는 힘이나 암석권 하부의 맨틀 견인력(drag force)이 판을 움직이는 주된 원동력으로 묘사되었다. 하지만 최근 여러 연구들은 판의 이동을 일으키는 원동력이 맨틀의 대류보다는 섭입대에서 침강하는 판이 만드는 섭입판 인력(slab pull)이라고 보고 있다. 최근 학계는 무거운 해양판과 주변 연약권의 밀도 차이가 섭입판 인력의 핵심이라고 설명한다. 해양판의 높은 밀도는 중력에 의해 판이 해구에서 맨틀 속으로 가라앉는 원인이 되며, 이것이 판이 움직이는 가장 큰 원동력을 발생시키는 것이다. 이러한 연구 결과들을 바탕으로, 본 연구는 고등학교 지구과학 교과서의 관련 내용을 검토하고 최근 수십 년 간의 서술 경향을 분석하였다. 그 결과 5차 교육과정 이래로 지금까지 거의 대부분의 고등학교 교과서가 맨틀 대류를 판 이동의 주 원동력으로 서술하고 있다는 것을 확인하였으며, 이는 대학교 교재가 개정판을 통해 새로운 학설을 꾸준히 제시해온 것과 대조적인 모습이라 할 수 있다. 따라서 학생들에게 더욱 정확한 학술적 정보를 제공하기 위해 이와 같은 새로운 판 구조론 내용이 해당 교과서 관련 단원에 추가되어야 할 것이다.

In the early model of plate tectonics, the plate was depicted as a passive raft floating on the convecting mantle and carried away by the mantle flow. At the same time, ridge push at spreading boundaries and drag force exerted by the mantle on the base of lithosphere were described as the dominant driving forces of plate movements. However, in recent studies of plate tectonics, it is generally accepted that the primary force driving plate motion is slab pull beneath subduction zones rather than other forces driven by mantle convection. The current view asserts that the density contrast between dense oceanic lithosphere and underlying asthenosphere is the substance of slab pull. The greater density of oceanic slab allows it to sink deeper into mantle at trenches by gravitational pull, which provides a dominant driving force for plate motion. Based on this plate tectonics development, this study investigated the contents of plate tectonics in high school Earth Science textbooks and how they have been depicted for the last few decades. Results showed that the early explanation of plate movement driven by mantle convection has been consistently highlighted in almost all high school textbooks since the 5th curriculum, whereas most introductory college textbooks rectified the early theory of plate movement and introduced a newly accepted theory in revised edition. Therefore, we suggest that the latest theory of plate tectonics be included in high school textbooks so that students get updated with recent understanding of it in a timely manner.

키워드

참고문헌

  1. Angus, C.H., 2004, Is textbook obsolete in new education? A critical analysis on the value of textbook in an inquiry curriculum, with special reference to the new Primary General Studies Curriculum in Hong Kong. ERIC No. ED490764.
  2. Ault, C.A.Jr., 1998, Criteria of excellence for geological inquiry: The necessity of ambiguity. Journal of Research in Science Teaching, 35, 189-212. https://doi.org/10.1002/(SICI)1098-2736(199802)35:2<189::AID-TEA8>3.0.CO;2-O
  3. Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3), 1027.
  4. Buffett, B.A., and Rowley, D.B., 2006, Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet Science Letters, 245, 359-364. https://doi.org/10.1016/j.epsl.2006.03.011
  5. Carlson, R.L., Hilde, T.W.C., and Uyeda, S., 1983, The driving mechanism of plate tectonics: Relation to age of the lithosphere at trench. Geophysical Research Letters, 10, 297-300. https://doi.org/10.1029/GL010i004p00297
  6. Chase, G.C., 1978, Asthenospheric counterflow: A kinematic model. Geophysical Journal of the Royal Astronomical Society, 56, 1-18.
  7. Cho, S.J., Kwon, S.T., Kim, D.J., Kim, H.S., Do, S.J., Yoon, S.T., Lee, M.H., Lee, Y.J., Lee, J.H., and Cho, H.Y. (co-translated), 2009, Understanding of the earth. Sigma Press, Seoul, Korea, 710 p.
  8. Grotzinger, J., Jordan, T.H., Press, F., and Siever, R., 2007, Understanding Earth. W.H. Freeman, New York, 670 p. (in Korean)
  9. Conrad, C.P., and Lithgow-Bertelloni, C., 2002, How mantle slabs drive plate tectonics. Science, 298(5591), 207-209. https://doi.org/10.1126/science.1074161
  10. Cox, A., and Hart, R.B., 1986, Plate tectonics: How it works. Blackwell Scientific Publications, 392 p.
  11. Davies, G.F., and Richards, M.A., 1992, Mantle convection. Journal of Geology, 100, 151-206. https://doi.org/10.1086/629582
  12. Davies, G.F., 1999, Dynamic Earth: Plates, plumes and mantle convection. Cambridge University Press, 472 p.
  13. Dietz, R.S., 1961, Continent and ocean basin evolution by spreading of the sea floor. Nature, 190(4779), 854-857. https://doi.org/10.1038/190854a0
  14. Duschl, R.A., and Smith, M.J., 2001, Earth science. Subject-specific instructional methods and activities, 8, 267-288.
  15. Elsasser, W.M., 1969, Convection and stress propagation in the upper mantle. The application of modern physics to the earth and planetary interiors, 223-246, ed. Runcorn, S.K., Wiley-Interscience, New York.
  16. Forsyth, D., and Uyeda, S., 1975, On the relative importance of the driving forces of plate motion. Geophysical Journal of Royal Astronomical Society, 43, 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
  17. Gordon, R.G., Allan, C., and Harter, C.E., 1978, Absolute motion of an individual plate estimated from its ridge and trench boundaries. Nature, 274, 752-755. https://doi.org/10.1038/274752a0
  18. Hacker, B.R., 2008, $H_2O$ subduction beyond arcs. Geochemistry Geophysics Geosystems, 9, Q03001, doi:10.1029/2007GC001707.
  19. Harper, J.F., 1975, On the driving forces of plate tectonics. Geophysical Journal of the Royal Astronomical Society, 40, 465-474. https://doi.org/10.1111/j.1365-246X.1975.tb04143.x
  20. Harper, J.F., 1978, Asthenosphere flow and plate motions. Geophysical Journal of the Royal Astronomical Society, 55, 87-110. https://doi.org/10.1111/j.1365-246X.1978.tb04749.x
  21. Heirzler, J.R., Le Pichon, X., and Baron, J.G., 1966, Magnetic anomalies over the Reykjannes ridge. Deep Sea Research, 13, 427.
  22. Hess, H.H., 1960, Evolution of ocean basin. Report to Office of Naval Research, Contract No. 1858(10).
  23. Holmes, A., 1929, Radioactivity and earth movements. Transactions Geological Society of Glasgow, 18, 559-606.
  24. Hynes, A., 2005, Buoyancy of the oceanic lithosphere and subduction initiation. International Geology Review, 47, 938-951. https://doi.org/10.2747/0020-6814.47.9.938
  25. Kim, K.R., Kim, D.H., Park, C.B., Jeon, J.G., and Cho, M.S. (co-translated), 2009, Understanding of the earth system. Pakhaksa, Seoul, Korea, 647 p.
  26. Lutgens, F.K., and Tarbuck, E.J., 2008, Foundations of earth science, 5th ed. Pearson/Prentice Hall, Upper Saddle River, U.S., 476 p. (in Korean)
  27. Kreemer, C., 2009, Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research, 114, B10405, doi:10.1029/2009JB006416.
  28. Lithgow-Bertelloni, C., and Richards, M.A., 1998, The dynamics of Cenozoic and Mesozoic plate motions. Review of Geophysics, 36, 27-78. https://doi.org/10.1029/97RG02282
  29. Lonsdale, P., 2005, Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404, 237-264. https://doi.org/10.1016/j.tecto.2005.05.011
  30. Martin, P., van Hunen, J., Parman, S., and Davidson, J., 2008, Why does plate tectonics occur only on Earth? Physics Education, 43(2), 144-150. https://doi.org/10.1088/0031-9120/43/2/002
  31. McKenzie, D.P., 1967, Some remarks on heat flow and gravity anomalies. Journal of Geophysical Research, 72, 6261-6273. https://doi.org/10.1029/JZ072i024p06261
  32. Ministry of Education, 1988, High school curriculum. Ministry of Education, Seoul, Korea, 350 p. (in Korean)
  33. Ministry of Education, 1992, National curriculum guide of science. Ministry of Education, Seoul, Korea, 194 p. (in Korean)
  34. Ministry of Education, 1997, National curriculum guide of science. Ministry of Education, Seoul, Korea, 244 p. (in Korean)
  35. Ministry of Education, 2015, Science curriculum. Ministry of Education, Seoul, Korea, 273 p. (in Korean)
  36. Ministry of Education, Science and Technology, 2009, National curriculum guide of science. Ministry of Education, Science and Technology, Seoul, Korea, 302 p. (in Korean)
  37. Oxburgh, E.R., and Parmentier, E.M., 1977, Compositional and density stratification in oceanic lithosphere-Causes and Consequences. Journal of the Geological Society, 133, 343-355. https://doi.org/10.1144/gsjgs.133.4.0343
  38. Park, J.-S., and Cho, H.-H., 1986, Identification of misconception of genetic concepts held by high school students and suggestions for teaching genetics. Journal of the Korean Association for Research in Science Education, 6, 35-42. (in Korean)
  39. Park, S.I., Son, Y.K., Ahn, J.H., Lee, D.J., Chang, T.W., Jeon, S.S., Jung, K.S., Cho, B.G., and Hwang, J. (cotranslated), 2003, The dynamic earth. Sigma Press, Seoul, Korea, 646 p.
  40. Skinner, B.J., and Porter, S.C., 2000, The dynamic earth: An introduction to physical geology, 4th ed. Wiley, New York, 640 p. (in Korean)
  41. Parsons, B., 1982, Causes and consequences of the relation between area and age of the sea floor. Journal of Geophysics Research, 87, 289-302. https://doi.org/10.1029/JB087iB01p00289
  42. Solomon, S.C., Sleep, N.H., and Richardson, R.M., 1975, On the forces driving plate tectonics: Inferences from absolute plate velocities and intraplate stress. Geophysical Journal of the Royal Astronomical Society, 42, 769-801.
  43. Stern, R.J., 1998, A subduction primer for instructors of introductory-Geology courses and authors of introductory-Geology textbooks. Journal of Geoscience Education, 46, 221-228. https://doi.org/10.5408/1089-9995-46.3.221
  44. Stern, R.J., 2007, When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52(3), 578-591. https://doi.org/10.1007/s11434-007-0073-8
  45. Vacquier, V., and Affleck, J., 1941, Computation of the depth of the bottom of the earth's magnetic crust. Eos, Transactions American Geophysical Union, 22, 446-450. https://doi.org/10.1029/TR022i002p00446
  46. Wegener, A., 1912, Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage. Petermanns Geographische Mitteilungnen, 63, 185-195, 253-256, 305-309.