DOI QR코드

DOI QR Code

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma

대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화

  • Song, Yoon Seok (Research and Development Office, Jeonbuk Institute for Food-Bioindustry) ;
  • Park, Yu Ri (Research and Development Office, Jeonbuk Institute for Food-Bioindustry) ;
  • Ryu, Seung Min (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute) ;
  • Jeon, Hyeong Won (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute) ;
  • Eom, Sang Heum (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute) ;
  • Lee, Seung Je (Research and Development Office, Jeonbuk Institute for Food-Bioindustry)
  • 송윤석 (전라북도생물산업진흥원) ;
  • 박유리 (전라북도생물산업진흥원) ;
  • 유승민 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 전형원 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 엄상흠 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 이승제 (전라북도생물산업진흥원)
  • Received : 2016.11.21
  • Accepted : 2016.12.23
  • Published : 2016.12.30

Abstract

This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.

건고추에 존재하는 미생물은 세균 3종(S. aureus, B. amyloliquefaciens, L. crispatus), 곰팡이 2종(I. lacteus, T. crustaceus)이 동정되었고, 그 중 인체 유해성이 있는 S. aureus를 대상으로 대기압 유전체장벽방전 플라즈마를 이용한 미생물 사멸효과와 건고추의 품질변화에 미치는 영향을 조사하였다. S. aureus의 사멸율은 플라즈마 처리를 위한 전력과 노출시간의 증가에 따라 증가하였고, 노출거리 증가에 따라 사멸율이 감소하였다. 한편, 다양한 전력, 노출시간, 노출거리 범위에서 건고추에 플라즈마를 처리한 결과, 건고추의 ASTA value 및 경도는 영향을 받지 않았고, 관능 특성(향, 맛, 색, 전체적 기호도)에서도 유의적 차이가 관찰되지 않았다. 최종적으로, $25^{\circ}C$에서 12주 동안 플라즈마 처리된 건고추의 저장성을 평가한 결과, 건고추의 ASTA value, capsaicin 농도, 경도가 일정하게 유지됨으로 인해 대기압 유전체장벽방전 플라즈마기술이 농 식품산업에 적용될 수 있는 유용한 살균기술임을 확인하였다.

Keywords

References

  1. Lee KS, Park GS (2014) Studies in the consumption and preference for sprout vegetables. J East Asian Soc Dietary Life, 24, 896-905
  2. Beuchat LR, Farber JM, Garrett EH, Harris LJ, Parish ME, Suslow TV, Busta FF (2001) Standardization of a method to determine the efficacy of sanitizers in inactivating human pathogenic microorganisms on raw fruits and vegetables. J Food Prot, 64, 1079-1084 https://doi.org/10.4315/0362-028X-64.7.1079
  3. Mahmoud BSM, Bhagat AR, Linton RH (2007) Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorin dioxide gas. Food Microbiol, 24, 736-744 https://doi.org/10.1016/j.fm.2007.03.006
  4. Luksiene Z, Buchovec I, Paskeviciute E (2010) Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllinbased photosensitization. J Photoch Photobio B, 101, 326-331 https://doi.org/10.1016/j.jphotobiol.2010.08.002
  5. Song HP, Kim B, Choe JH, Jung S, Moon SY, Choe WH, Jo CR (2009) Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol, 26, 432-436 https://doi.org/10.1016/j.fm.2009.02.010
  6. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes Polym, 2, 391-400 https://doi.org/10.1002/ppap.200400078
  7. Ryu YH, Uhm HS, Park GS, Choi EH (2013) Sterilization of Neurospora crassa by noncontacted low temperature atmospheric pressure surface discharged plasma with dielectric barrier structure. J Korean Vacuum Soc, 22, 55-65 https://doi.org/10.5757/JKVS.2013.22.2.55
  8. Son HH, Lee WG (2011) Discharge properties of torch-type atmospheric pressure plasma and its local disinfection of microorganism. Korean Chem Eng Res, 49, 835-839 https://doi.org/10.9713/kcer.2011.49.6.835
  9. Yoon GA, Mok CK (2015) Microbial inactivation of grains used in Saengshik by corona discharge plasma jet. Korean J Food Sci Technol, 47, 70-74 https://doi.org/10.9721/KJFST.2015.47.1.70
  10. Lee HB, Noh YE, Yang HJ, Min SC (2011) Inhibition of foodborne pathogens on polystyrene, sausage casings, and smoked salmon using nonthermal plasma treatments. Korean J Food Sci Technol, 43, 513-517 https://doi.org/10.9721/KJFST.2011.43.4.513
  11. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym, 5, 503-533 https://doi.org/10.1002/ppap.200700154
  12. De Geyter N, Morent R (2012) Nonthermal plasma sterilization of living and nonliving surfaces. Annu Rev Biomed Eng, 14, 255-274 https://doi.org/10.1146/annurev-bioeng-071811-150110
  13. Seo HY, Yoo EM, Choi YR, Kim SH, Kim KM, Kim KN (2014) Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin. J Korean Soc Dent Hyg, 14, 783-788 https://doi.org/10.13065/jksdh.2014.14.05.783
  14. Kim JH, Lee MA, Han GJ, Cho BH (2014) Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontol Scand, 72, 1-12 https://doi.org/10.3109/00016357.2013.795660
  15. Mok CK, Lee TH (2011) Operational properties and microbial inactivation performance of dielectric barrier discharge plasma treatment system. Food Eng Prog, 15, 398-403
  16. Sim HS, Kim MD (2016) Antipathogenic activity of Bacillus amyloliquefaciens isolated from korean traditional rice wine. Micobiol Biotechnol Lett, 44, 98-105 https://doi.org/10.4014/mbl.1511.11005
  17. Kim YJ, Song HG, Choi HT (2008) Degradation of bisphenol A and removal of its estrogenic activity by two laccase transformants of Irpex lacteus. Kor J Microbiol, 44, 199-202
  18. Park HS, Bahk GJ, Park KH, Pak JY, Ryu K (2010) Predictive model for growth of Staphylococcus aureus in Suyuk. Korean J Food Sci Ani Resour, 30, 487-494 https://doi.org/10.5851/kosfa.2010.30.3.487
  19. Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom, 233, 81-86 https://doi.org/10.1016/j.ijms.2003.11.016
  20. Bogaerts A, Neyts E, Gijbels R, Mullen V (2002) Gas discharge plasmas and their application. Spectrochim Acta Part B, 57, 609-658 https://doi.org/10.1016/S0584-8547(01)00406-2
  21. Jo JO, Lee HW, Mok YS (2014) Sterilization of scoria powder by corona discharge plasma. Appl Chem Eng, 25, 386-391 https://doi.org/10.14478/ace.2014.1046
  22. Kim JE, Kim IH, Min SC (2013) Microbial decontamination of vegetables and spices using cold plasma treatments. Korean J Food Sci Technol, 45, 735-741 https://doi.org/10.9721/KJFST.2013.45.6.735
  23. Mok CK, Lee TH (2012) Dielectric barrier discharge plasma inactivation of Escherichia coli. Food Eng Prog, 16, 33-39
  24. Mok CK, Jeon HJ (2013) Low pressure discharge plasma inactivation of microorganisms in black pepper powder. Food Eng Prog, 17, 43-47

Cited by

  1. 비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 vol.28, pp.1, 2016, https://doi.org/10.15269/jksoeh.2018.28.1.61
  2. 비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 vol.28, pp.1, 2016, https://doi.org/10.15269/jksoeh.2018.28.1.61
  3. Evaluation of Nonthermal Plasma Treatment by Measurement of Stored Citrus Properties vol.43, pp.4, 2016, https://doi.org/10.5307/jbe.2018.43.4.401
  4. 담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향 vol.29, pp.4, 2016, https://doi.org/10.12791/ksbec.2020.29.4.464