DOI QR코드

DOI QR Code

Antioxidant and antiproliferating effects of Setaria italica, Panicum miliaceum and Sorghum bicolor extracts on prostate cancer cell lines

조, 기장, 수수 추출물의 항산화 효과 및 전립선 암세포주 증식 억제 효능

  • Kim, Jeong-Ho (Department of Food and Nutrition, Sunchon National University) ;
  • Cho, Hyun-Dong (Department of Food Science and Biotechnology, Kyungpook National University) ;
  • Hong, Seong-Min (Department of Biotechnology, Dong-A University) ;
  • Lee, Ju-Hye (Functional Food and Nutrition Division, Department of Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Yong-Seok (Department of Biotechnology, Dong-A University) ;
  • Kim, Du-Hyun (Department of Life Resources Industry, Dong-A University) ;
  • Seo, Kwon-Il (Department of Biotechnology, Dong-A University)
  • 김정호 (순천대학교 식품영양학과) ;
  • 조현동 (경북대학교 식품공학과) ;
  • 홍성민 (동아대학교 생명공학과) ;
  • 이주혜 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 이용석 (동아대학교 생명공학과) ;
  • 김두현 (동아대학교 생명자원산업학과) ;
  • 서권일 (동아대학교 생명공학과)
  • Received : 2016.11.03
  • Accepted : 2016.12.06
  • Published : 2016.12.30

Abstract

In this study, we evaluated antioxidant and antiproliferating effects of Setaria italica extract (SIE), Panicum miliaceum extract (PME) and Sorghum bicolor extract (SBE). Antioxidant effects of these extracts were determined by assessing DPPH radical scavenging activity, $ABTS^+$ radical scavenging activity, reducing power and superoxide dismutase (SOD)-like activity. From high concentrations ($1,000{\mu}g/mL$) of each extract at DPPH radical scavenging activities of SIE, PME and SBE were 10.5%, 5.5% and 86.8% respectively, $ABTS^+$ radical activities were 4.92%, 5.9% and 62.3% respectively, reducing powers (OD 700) were 0.15, 0.18 and 1.7 respectively, and SOD-like activities were 17.0%, 15.9% and 38.6% respectively. In addition, SBE significantly decreased the cell viability of androgen-sensitive lymph node metastasis type of prostate cancer (LNCaP) cells in a dose-dependent manner. Morphological study of SBE-treated LNCaP cells revealed distorted and shrunken cell masses. SBE-induced cell death was confirmed by observation of nuclear condensation and increased formation of apoptotic bodies. The antiproliferative effect of SBE seems to be associated with the antioxidant activity of its polyphenol content. The results of this study indicate that SBE can exert antioxidant and antiproliferative effects and may be as a useful food material.

본 논문에서는 조, 기장 및 수수 추출물에 대한 항산화활성 및 인체 전립선암 세포성장 억제효과를 평가하고자 하였다. 조, 기장 및 수수 추출물에 대한 항산화 활성을 DPPH 라디칼 소거능, ABTS 라디칼 소거능, 환원력 및 SOD 유사 활성능을 통해 확인한 결과, 수수 추출물에서 농도의존적인 항산화 활성의 증가를 관찰할 수 있었으며 이는 조 및 기장 추출물보다 높은 효능을 보이는 것으로 나타났다. 두 가지의 다른 형태의 인체 전립선 암세포(PC-3 및 LNCaP)를 이용하여 암세포 증식 억제활성을 확인한 결과, 조 추출물과 기장 추출물의 처리는 $1,000{\mu}g/mL$의 농도에서도 큰 억제 효과를 확인할 수 없었으나 LNCaP 세포에 수수 추출물을 처리한 군에서는 $10{\mu}g/mL$의 농도에서부터 유의적인 세포증식 억제효능을 확인할 수 있었다. PC-3 및 LNCaP 세포의 형태학적 변화를 알아본 결과, 수수 추출물을 처리한 군에서 부유, 사멸 및 증식억제가 관찰되었으나 동일한 농도의 조 및 기장 추출물을 처리한 군에서는 대조군과 유사한 세포형태를 유지하였으며 특이적인 세포독성이 관찰되지 않았다. Hoechst 염색을 통한 핵 형태 관찰에서도 조 및 기장 추출물과는 대조적으로 수수 추출물에서만 apoptotic body, 세포 및 핵의 응축 등 세포 사멸과 관련된 형태학적 변화가 관찰되었다. 조, 기장, 수수 추출물의 총 폴리페놀 함량은 각각 2.01, 1.71, 29.10 mg GAE/g로 나타났으며, 총 폴리페놀 함량이 가장 높았던 수수에서 항산화 및 항암 효능이 우수함을 확인할 수 있었다. 결과적으로 조, 기장 및 수수 추출물 중 폴리페놀 함량이 가장 높았던 수수에서 항산화 활성 및 인체 전립선 암세포의 성장 억제효과가 뛰어난 것으로 확인되었으며, 이를 통해 수수 추출물을 항산화 및 암세포의 증식억제를 위한 식품원료 및 산업 소재로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Shen Y, Zhang H, Cheng L, Wang L, Qian H, Qi X (2016) In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem, 194, 1003-1012 https://doi.org/10.1016/j.foodchem.2015.08.083
  2. Niki E (2016) Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct, 7, 2156-2168 https://doi.org/10.1039/C6FO00275G
  3. Maes M, Twisk FNM (2010) Chronic fatigue syndrome: Harvey and Wessely's (bio) psychosocial model versus a bio (psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways. BMC Medicine, 8, 1-13 https://doi.org/10.1186/1741-7015-8-1
  4. Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev, 1, 705-720 https://doi.org/10.1016/S1568-1637(02)00024-7
  5. Shen S, Callaghan D, Juzwik C, Xiong H, Huang P, Zhang W (2014) ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer's disease. J Neurochem, 114, 1590-1604
  6. Lee JH, Shin YJ, Cho DJ, Lim HJ, Choi WE, Lee YK (2004) Antitumor and antimutagenic effect of the proteinpolysaccharides from Poluporus umbellatus. J Korean Soc Food Sci Nutr, 33, 475-479 https://doi.org/10.3746/jkfn.2004.33.3.475
  7. Park MS, So JS, Bahk GJ (2015) Antioxidative and anticancer activities of water extracts from different parts of Taraxacum coreanum Nakai cultivated in Korea. J Korean Soc Food Sci Nutr, 44, 1234-1240 https://doi.org/10.3746/jkfn.2015.44.8.1234
  8. Burks DA, Littleton RH (1992) The epidemiology of prostate cancer in black men. Henry Ford Hosp Med J, 40, 89-92
  9. Panov A, Orynbayeva Z (2013) Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One, 8, e72078 https://doi.org/10.1371/journal.pone.0072078
  10. Won YS, Lee JH, Kwon SJ, Ahn DU, Shin DY, Seo KI (2014) Anticancer effects of cultivated Orostachys japonicus on human prostate cancer cells. J Korean Soc Food Sci Nutr, 43, 67-73 https://doi.org/10.3746/jkfn.2014.43.1.067
  11. Kwon SH, Kwon SJ, Kim JY, Park KW, Shim KH, Seo KI (2009) Protective effect of Corni fructus ethanol extracts against environmental hormones in human prostate cancer cells. J Korean Soc Food Sci Nutr, 38, 663-666 https://doi.org/10.3746/jkfn.2009.38.6.663
  12. Park SY, Kim EJ, Lim DY, Kim JS, Lim SS, Shin HK, Yoon JH (2008) Inhibitory effect of the hexane extract of Saussurea lappa on the growth of LNCaP human prostate cancer cells. J Korean Soc Food Sci Nutr, 37, 8-15 https://doi.org/10.3746/jkfn.2008.37.1.8
  13. Hwang EJ, Cha YJ, Park MH, Lee JW, Lee SY (2004) Cytotoxicity and chemosensitizing effect of camellia (Camellia japonica) tea extracts. J Korean Soc Food Sci Nutr, 33, 487-493 https://doi.org/10.3746/jkfn.2004.33.3.487
  14. Kwak CS, Lim SJ, Kim SA, Park SC, Lee MS (2004) Antioxidative and antimutagenic effects of Korean buckwheat, sorghum, millet and Job's tears. J Korean Soc Food Sci Nutr, 33, 921-929 https://doi.org/10.3746/jkfn.2004.33.6.921
  15. Ha YD, Lee SP (2001) Characteristics of proteins in Italian millet, sorghum and common meillet. Korean J Postharvest Sci Technol, 8, 187-192
  16. An TK (1999) Illustrated book of Korean medicinal herbs. Kyohak Publishing Co Ltd, Seoul, Korea, p 887
  17. Zhang L, Liu R, Niu W (2014) Phytochemical and antiproliferative activity of proso millet. PLoS One, 9, e104058 https://doi.org/10.1371/journal.pone.0104058
  18. Park MY, Seo DW, Lee JY, Sung MK, Lee YM, Jang HH, Choi HY, Kim JH, Park DS (2011) Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes. Nutr Res Pract, 5, 192-197 https://doi.org/10.4162/nrp.2011.5.3.192
  19. Park MY, Jang HH, Kim JB, Yoon HN, Lee JY, Lee YM, Kim JH, Park DS (2011) Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice. Nutr Res Pract, 5, 511-519 https://doi.org/10.4162/nrp.2011.5.6.511
  20. Kim KO, Kim HS, Ryu HS (2006) Effect of Sorghum bicolor L. Moench(Sorghum, su-su) water extracts on mouse immune cell activation. J Korean Diet Assoc, 12, 82-88
  21. Vermont PD, Pangloli P, Jones L, McClureb A, Patel A (2016) Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food Funct, 7, 3410-3420 https://doi.org/10.1039/C6FO00757K
  22. Park JH, Lee SH, Chung IM, Park YS (2012) Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via $PPAR-{\gamma}$ in mice fed a high-fat diet. Nutr Res Pract, 6, 322-327 https://doi.org/10.4162/nrp.2012.6.4.322
  23. Gao X, Bjork L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J Sci Food Agric, 80, 2021-2027 https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  24. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  25. Biglari F, AlKarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem, 107, 1636-1641 https://doi.org/10.1016/j.foodchem.2007.10.033
  26. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem, 49, 4083-4089 https://doi.org/10.1021/jf0103572
  27. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112-1116 https://doi.org/10.1038/nprot.2006.179
  29. Kang HI, Kim JY, Kwon SJ, Park KW, Kang JS, Seo KI (2010) Antioxidative effects of peanut sprout extracts. J Korean Soc Food Sci Nutr, 39, 941-946 https://doi.org/10.3746/jkfn.2010.39.7.941
  30. Kim DG, Lee BG, Kim HY (2003) Use of Fraxnius rhynchophylla $H{\cdot}$ance bark as antioxidant. J Kor For En, 22, 69-76
  31. Kang SR, Shin MO, Kim SG, Lee SH, Kim MH (2009) Antioxidative activity of pine (Pinus densiflora) needle extracts in rats fed high-cholesterol diet. J Korean Soc Food Sci Nutr, 38, 423-429 https://doi.org/10.3746/jkfn.2009.38.4.423
  32. Lee JM, Chung H, Chang PS, Lee JH (2007) Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1- picrylhydrazyl (DPPH). Food Chem, 103, 662-669 https://doi.org/10.1016/j.foodchem.2006.07.052
  33. Berg RVD, Haenen GRMM, Berg HVD, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem, 66, 511-517 https://doi.org/10.1016/S0308-8146(99)00089-8
  34. Ko JY, Song SB, Lee JS, Kang JR, Seo MC, Oh BG, Kwak DY, Nam MH, Jeong HS, Woo KS (2011) Changes in chemical components of foxtail millet, proso millet, and sorghum with germination. J Korean Soc Food Sci Nutr, 40, 1128-1135 https://doi.org/10.3746/jkfn.2011.40.8.1128
  35. Oh YN, Jin SJ, Park HJ, Kwon HJ, Kim BW (2014) Anti-oxidative and anti-cancer activities by cell cycle regulation of Salsola collina extract. Korean J Microbiol Biotechnol, 42, 73-81 https://doi.org/10.4014/kjmb.1311.11009
  36. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Role of oxidative stress in prostate cancer. Cancer Lett, 282, 125-136 https://doi.org/10.1016/j.canlet.2008.12.011
  37. Liu C, Zhu Y, Lou W, Nadiminty N, Chen X, Zhou Q, Shi XB, White RW, Gao AC (2013) Functional p53 determines Docetaxel sensitivity in prostate cancer cells. The Prostate, 73, 418-427 https://doi.org/10.1002/pros.22583
  38. Wyllie AH, Kerr JFR, Currie AR, (1980) Cell death: the significance of apoptosis. Int Rev Cytol, 68, 251-306 https://doi.org/10.1016/S0074-7696(08)62312-8
  39. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25, 4798-4811 https://doi.org/10.1038/sj.onc.1209608
  40. Suganyadevi P, Saravanakumar KM, Mohandas S (2013) The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through $p^{53}$-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci, 92, 379-382 https://doi.org/10.1016/j.lfs.2013.01.006
  41. Park JH, Darvin P, Lim EJ, Joung YH, Hong DY, Park EU, Park SH, Choi SK, Moon ES, Cho BW, Park KD, Lee HK, Kim MJ, Park DS, Chung IM, Yang YM (2012) Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS One, 7, e40531 https://doi.org/10.1371/journal.pone.0040531
  42. Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H (1999) Phenolic antioxidants from the leaves of Corchorus olitorius L.. J Agric Food Chem, 47, 3963-3966 https://doi.org/10.1021/jf990347p
  43. Senter SD, Horvat RJ, Forbus WR (1983) Comparative GLC-MS analysis of phenolic acids of selected tree nuts. J Food Sci, 48, 798-799 https://doi.org/10.1111/j.1365-2621.1983.tb14902.x

Cited by

  1. A High-Yielding and Medium Maturing Proso Millet (Panicum miliaceum L.) Variety &lsquo;Cheongpungchal&rsquo; vol.51, pp.1, 2016, https://doi.org/10.9787/kjbs.2019.51.1.55
  2. Functional Compounds and Physiological Activities of Proso Millet Cultivars vol.50, pp.7, 2016, https://doi.org/10.3746/jkfn.2021.50.7.692