DOI QR코드

DOI QR Code

Thermoresistant properties of bacterioferritin comigratory protein against high temperature stress in Schizosaccharomyces pombe

Schizosaccharomyces pombe에 존재하는 bacterioferritin comigratory protein의 고온 스트레스에 대한 열저항적 성질

  • Ryu, In Wang (Department of Biological Sciences, Kangwon National University) ;
  • Lee, Su Hee (Department of Biological Sciences, Kangwon National University) ;
  • Lim, Hye-Won (Shebah Biotech Inc.) ;
  • Ahn, Kisup (Department of Health Administration, Baekseok Culture University) ;
  • Park, Kwanghark (Department of Biological Sciences, Kangwon National University) ;
  • Sa, Jae-Hoon (Division of Food Analysis, Gangwon Institute of Health & Environment) ;
  • Jeong, Kyung Jin (Division of Food Analysis, Gangwon Institute of Health & Environment) ;
  • Lim, Chang-Jin (Shebah Biotech Inc.) ;
  • Kim, Kyunghoon (Department of Biological Sciences, Kangwon National University)
  • 류인왕 (강원대학교 자연과학대학 생명과학과) ;
  • 이수희 (강원대학교 자연과학대학 생명과학과) ;
  • 임혜원 (주)세바바이오텍) ;
  • 안기섭 (백석문화대학교 보건행정과) ;
  • 박광학 (강원대학교 자연과학대학 생명과학과) ;
  • 사재훈 (강원도보건환경연구원 식품분석과) ;
  • 정경진 (강원도보건환경연구원 식품분석과) ;
  • 임창진 (주)세바바이오텍) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학과)
  • Received : 2016.11.10
  • Accepted : 2016.12.16
  • Published : 2016.12.31

Abstract

The Schizosaccharomyces pombe structural gene encoding bacterioferritin comigratory protein (BCP) was previously cloned using the shuttle vector pRS316 to generate the BCP-overexpressing plasmid pBCP10. The present work aimed to evaluate the thermoresistant properties of BCP against high temperature stress using the plasmid pBCP10. When the S. pombe cells were grown to the early exponential phase and shifted from $30^{\circ}C$ to $37^{\circ}C$ or $42^{\circ}C$, the S. pombe cells harboring pBCP10 grew significantly more at both $37^{\circ}C$ and $42^{\circ}C$ than the vector control cells. After 6 h of the shifting to higher incubation temperatures, they contained the lower reactive oxygen species (ROS) and nitrite content, an index of nitric oxide (NO), than the vector control cells. After the temperature shifts, total glutathione (GSH) content and total superoxide dismutase (SOD) activities were much higher in the S. pombe cells harboring pBCP10 than in the corresponding vector control cells. Taken together, the S. pombe BCP plays a thermoresistant role which might be based upon its ability both to down-regulate ROS and NO levels and to up-regulate antioxidant components, such as total GSH and SOD, and subsequently to maintain thermal stability.

이전의 연구에서, bacterioferritin comigratory protein (BCP)을 인코딩하는 Schizosaccharomyces pombe의 구조유전자를 shuttle vector인 pRS316에 클로닝하여 BCP 과잉발현 플라즈미드인 pBCP10을 제조한 바 있다. 본 연구에서는, 플라즈미드 pBCP10을 사용하여 고온 스트레스에 대한 BCP의 열저항적 성질을 평가하였다. 대수기의 초기까지 성장시킨 S. pombe 세포의 배양 온도를 $30^{\circ}C$에서 $37^{\circ}C$$42^{\circ}C$로 전이시키는 경우, pBCP10 함유 S. pombe 세포가 벡터 대조 세포보다 $37^{\circ}C$$42^{\circ}C$ 모두에서 유의하기 더 잘 성장하였다. 높은 배양 온도로 전이한 뒤 6시간에서, pBCP10 함유 S. pombe 세포가 벡터 대조 세포보다 낮은 활성산소종(ROS)과 일산화질소(NO)의 지표로 측정된 아질산염(nitrite) 함량을 갖고 있음이 확인되었다. 온도 전이 뒤에, 총 글루타치온(total glutathione) 함량과 총 수퍼옥사이드 디스뮤타제(superoxide dismutase) 활성은 대응되는 벡터 대조 세포보다 pBCP10 함유 S. pombe 세포에서 현저하게 높다는 사실도 확인되었다. 종합하면, S. pombe BCP는 열저항적 역할을 보유하는 데, 활성산소종과 일산화질소에 대한 하강시키는 활성과 총 글루타치온과 수퍼옥사이드 디스뮤타제 등의 항산화 성분들을 상승시키는 활성, 즉 종합적으로 열안정성을 유지하는 활성에 근거하는 것으로 추정되었다

Keywords

References

  1. Bast, A., Wolf, G., Oberbaumer, I., and Walther, R. 2002. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia 45, 867-876. https://doi.org/10.1007/s00125-002-0846-1
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Clarke, D.J., Ortega, X.P., Mackay, C.L., Valvano, M.A., Govan, J.R., Campopiano, D.J., Langridge-Smith, P., and Brown, A.R. 2010. Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity. Biochemistry 49, 1319-1330. https://doi.org/10.1021/bi901703m
  4. Das, P.K. and Bagchi, S.N. 2012. Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma 249, 65-74. https://doi.org/10.1007/s00709-011-0262-9
  5. Hofmann, B., Hecht, H.J., and Flohe, L. 2002. Peroxiredoxins. Biol. Chem. 383, 347-364.
  6. Jeong, W.J., Cha, M.K., and Kim, I.H. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275, 2924-2930. https://doi.org/10.1074/jbc.275.4.2924
  7. Kanadia, R.N., Kuo, W.N., Mcnabb, M., and Botchway, A. 1998. Constitutive nitric oxide synthase in Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. 45, 1081-1087.
  8. Kang, G.Y., Park, E.H., Kim, K., and Lim, C.J. 2009. Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67. https://doi.org/10.1007/s12275-008-0077-3
  9. Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
  10. Kig, C. and Temizkan, G. 2009. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238, 59-66. https://doi.org/10.1007/s00709-009-0074-3
  11. Kong, W., Shiota, S., Shi, Y., Nakayama, H., and Nakayama, K. 2000. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migaratory protein (Bcp). Biochem. J. 351, 107-114. https://doi.org/10.1042/bj3510107
  12. Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., and Chae, H.Z. 2001. Cyclophin a binds to peroxiredoxins and activates its peroxidase activity. J. Biol. Chem. 276, 29826-29832. https://doi.org/10.1074/jbc.M101822200
  13. Lee, Y.Y., Kim, H.G., Jung, H.I., Shin, Y.H., Hong, S.M., Park, E.H., Sa, J.H., and Lim, C.J. 2002. Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311.
  14. Liao, S.J., Yang, C.Y., Chin, K.H., Wang, A.H., and Chou, S.H. 2009. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures. J. Mol. Biol. 390, 951-966. https://doi.org/10.1016/j.jmb.2009.05.030
  15. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase ${\pi}$ as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
  16. Pham, B.P., Jia, B., Lee, S., Ying, S., Kwak, J.M., and Cheong, G.W. 2015. Chaperone-like activity of a bacterioferritin comigratory protein from Thermococcus kodakaraensis KOD1. Protein Pept. Lett. 22, 443-448. https://doi.org/10.2174/0929866522666150326000330
  17. Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.N., Fay, E.D., Hirasawa, M., Duplessis, S.D., Lemaire, P., Frey, F., Martin, F., et al. 2004. Polar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol. 134, 1027-1038. https://doi.org/10.1104/pp.103.035865
  18. Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  19. Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  20. Wang, G., Olczak, A.A., Walton, J.P., and Maier, R.J. 2005. Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization. Infect. Immun. 73, 378-384. https://doi.org/10.1128/IAI.73.1.378-384.2005
  21. Wink, D.A., Miranda, K.M., and Espey, M.G. 2001. Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp. Biol. Med. 226, 621-623. https://doi.org/10.1177/153537020222600704
  22. Wong, C.M., Zhou, Y., Ng, R.W., Kung, H.F., and Jin, D.Y. 2002. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277, 5385-5394. https://doi.org/10.1074/jbc.M106846200