참고문헌
- Abe, H. and Doi, Y. 2002. Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules 3, 133-138. https://doi.org/10.1021/bm0155975
- Abe, H., Doi, Y., Fukushima, T., and Eya, H. 1994. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int. J. Biol. Macromol. 16, 115-119. https://doi.org/10.1016/0141-8130(94)90036-1
- Akaraonye, E., Keshavarz, T., and Roy, I. 2010. Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732-743. https://doi.org/10.1002/jctb.2392
- Chen, G.Q. 2011. Biofunctionalization of polymers and their applications. Adv. Biochem. Eng. Biotechnol. 125, 29-45.
- Chen, J.Y., Liu, T., Zheng, Z., Chen, J.C., and Chen, G.Q. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237. https://doi.org/10.1111/j.1574-6968.2004.tb09538.x
- Chen, J.Y., Song, G., and Chen, G.Q. 2006. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and mediumchainlength 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89, 157-167. https://doi.org/10.1007/s10482-005-9019-9
- Chen, G., Zhang, G., Park, S., and Lee, S. 2001. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57, 50-55. https://doi.org/10.1007/s002530100755
- Chung, M.G. and Rhee, Y.H. 2012. Overexpression of the (R)-specific enoyl-CoA hydratase gene from Pseudomonas chlororaphis HS21 in Pseudomonas strains for the biosynthesis of polyhydroxyalkanoates of altered monomer composition. Biosci. Biotechnol. Biochem. 76, 613-616. https://doi.org/10.1271/bbb.110871
- Hazer, B. and Steinbuchel, A. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12. https://doi.org/10.1007/s00253-006-0732-8
- Hein, S., Paletta, J., and Steinbuchel, A. 2002. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58, 229-236. https://doi.org/10.1007/s00253-001-0863-x
- Huisman, G.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., and Witholt, B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266, 2191-2198.
- Iwasaki, K., Uchiyama, H., Yagi, O., Kurabayashi, T., Ishizuka, K., and Takamura, Y. 1994. Transformation of Pseudomonas putida by electroporation. Biosci. Biotechnol. Biochem. 58, 851-854. https://doi.org/10.1271/bbb.58.851
- Kang, H.O., Chung, C.W., Kim, H.W., Kim, Y.B., and Rhee, Y.H. 2001. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191. https://doi.org/10.1023/A:1012214029825
- Keshavarz, T. and Roy, I. 2010. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321-326. https://doi.org/10.1016/j.mib.2010.02.006
- Kim, D.Y., Kim, H.W., Chung, M.G., and Rhee, Y.H. 2007. Biosynthesis, modification, and biodegradation of bacterial medium-chainlength polyhydroxyalkanoates. J. Microbiol. 45, 87-97.
- Kim, D.Y., Kim, Y.B., and Rhee, Y.H. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29. https://doi.org/10.1016/S0141-8130(00)00150-1
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
- Lee, E.Y., Jendrossek, D., Schirmer, A., Choi, C.Y., and Steinbuchel, A. 1995. Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1, 3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. Appl. Microbiol. Biotechnol. 42, 901-909. https://doi.org/10.1007/BF00191189
- Lee, S.H., Kim, J.H., Mishra, D., Ni, Y.Y., and Rhee, Y.H. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102, 6159-6166. https://doi.org/10.1016/j.biortech.2011.03.025
- Leong, Y.K., Show, P.L., Ooi, C.W., Ling, T.C., and Lan, J.C.W. 2014. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J. Biotechnol. 180, 52-65. https://doi.org/10.1016/j.jbiotec.2014.03.020
- Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., and Doi, Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180, 6459-6467.
- Nomura, C.T., Taguchi, K., Taguchi, S., and Doi, Y. 2004. Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl. Environ. Microbiol. 70, 999-1007. https://doi.org/10.1128/AEM.70.2.999-1007.2004
- Qi, Q.S., Rehm, B.H.A., and Steinbuchel, A. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162. https://doi.org/10.1111/j.1574-6968.1997.tb12767.x
-
Schubert, P., Steinbuchel, A., and Schlegel, H.G. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-
${\beta}$ -hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 5837-5847. https://doi.org/10.1128/jb.170.12.5837-5847.1988 -
Shen, X.W., Shi, Z.Y., Song, G., Li, Z.J., and Chen, G.Q. 2011. Engineering of polyhydroxyalkanoate (PHA) synthase
$PhaC2_{Ps}$ of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Appl. Microbiol. Biotechnol. 91, 655-665. https://doi.org/10.1007/s00253-011-3274-7 - Steinbuchel, A. and Lutke-Eversloh, T. 2003. Metabolic engineering and pathway construction for biotechnological production of relavant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96. https://doi.org/10.1016/S1369-703X(03)00036-6
- Takase, K., Matsumoto, K.I., Taguchi, S., and Doi, Y. 2004. Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5, 480-485. https://doi.org/10.1021/bm034323+
- Takase, K., Taguchi, S., and Doi, Y. 2003. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J. Biochem. 133, 139-145. https://doi.org/10.1093/jb/mvg015
- Woo, S.H., Kim, J.H., Ni, Y.Y., and Rhee, Y.H. 2012. Biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 strain. Korean J. Microbiol. 48, 200-206. https://doi.org/10.7845/kjm.2012.031