DOI QR코드

DOI QR Code

출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향

Effects of Paf1 complex components on H3K4 methylation in budding yeast

  • 오준수 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 이정신 (강원대학교 의생명과학대학 분자생명과학과)
  • Oh, Jun-Soo (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Lee, Jung-Shin (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
  • 투고 : 2016.11.17
  • 심사 : 2016.12.12
  • 발행 : 2016.12.31

초록

출아 효모에서의 Paf1 복합체는 총5개의 단백질로 구성되어있고, 구성성분들은 출아효모, 초파리, 식물들, 그리고 인간에 이르기까지 구조적으로, 기능적으로 잘 보존되어 있다. RNA 중합효소 II와 결합한 상태로 전사 개시부위부터 종결부위까지 함께 이동하며, 여러 전사인자들의 유입을 위한 매개체로 작용하여, 유전자 발현 조절의 핵심적인 역할을 수행한다. Paf1 복합체는 H2BK123 monoubiquitination에 기여하고, histone crosstalk에 의해 간접적으로 H3K4의 di-, tri-methylation에 기여하는 것이 알려져 있다. 하지지만, Paf1 복합체 구성요소들의 개별적인 기능에 대해서는 연구가 되어있지 않다. 이 연구에서는, Paf1 복합체 구성요소들의 단일 결핍 돌연변이 균주를 만든 후, 이들의 H2BK123 monoubiquitination 및 H3K4 mono-, di-, tri-methylation에 미치는 영향을 관찰했다. 놀랍게도, ${\Delta}paf1$, ${\Delta}rtf1$, ${\Delta}ctr9$ 돌연변이 균주에서는 H2Bub에 영향을 받는 H3K4me2와 H3K4me3뿐 아니라, H2B monoubiquitination에 영향을 받지 않는 H3K4 monomethylation의 심각한 감소를 관찰했다. 그러나, methyl기 전달 효소인 Set1의 발현 정도는 이 돌연변이 균주들에서 변하지 않았다. 이러한 결과로부터, Paf1 복합체가 Set1의 활성이나 Set1 복합체의 안정성을 직접 조절함으로써 H3K4 methylation을 조절할 수 있음을 제시한다.

In Saccharomyces cerevisiae, Paf1 complex consists of five proteins, and they are structurally and functionally well conserved in yeast, fruit fly, plants, and human. With binding to RNA polymerase II from transcription start site to termination site, Paf1 complex functions as a platform for recruiting many types of transcription factors to RNA polymerase II. Paf1 complex contributes to H2B ubiquitination and indirectly influences on H3K4 di- and tri-methylation by histone crosstalk. But the individual effects of five components in Paf1 complex on these two histone modifications including H2B ubiquitination and H3K4 methylation largely remained to be identified. In this study, we constructed the single-gene knockout mutants of each Paf1 complex component and observed H3K4 mono-, di-, and trimethylation as well as H2B ubiquitination in these mutants. Interestingly, in each ${\Delta}paf1$, ${\Delta}rtf1$, and ${\Delta}ctr9$ strain, we observed the dramatic defect in H3K4 monomethylation, which is independent of H2B ubiquitination, as well as H3K4 di- and trimethylation. However, the protein level of Set1, which is methyltransferase for H3K4, was not changed in these mutants. This suggests that Paf1 complex may directly influence on H3K4 methylation by directly regulating the activity of Set1 or the stability of Set1 complex in an H2B ubiquitination independent manner.

키워드

참고문헌

  1. Bannister, A.J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395. https://doi.org/10.1038/cr.2011.22
  2. Dover, J., Schneider, J., Twaiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M., and Shilatifard, A. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368-28371. https://doi.org/10.1074/jbc.C200348200
  3. Jaehning, J.A. 2010. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim. Biophys. Acta. 1799, 5-6.
  4. Kim, J. and Roeder, R.G. 2009. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J. Biol. Chem. 284, 20582-20592. https://doi.org/10.1074/jbc.M109.017442
  5. Kornberg, D. and Lorch, Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294. https://doi.org/10.1016/S0092-8674(00)81958-3
  6. Krogan, N.J., Dover, J., Wood, A., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Ryan, O.W., Golshani, A., Johnston, M., et al. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell. 11, 721-729. https://doi.org/10.1016/S1097-2765(03)00091-1
  7. Lee, J.S., Shukla, A., Schneider, J., Swanson, S.K., Washburn, M.P., Florens, L., Bhaumik, S.R., and Shilatifard, A. 2007. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084-1096. https://doi.org/10.1016/j.cell.2007.09.046
  8. Lee, J.S., Smith, E., and Shilatifard, A. 2010. The language of histone crosstalk. Cell 142, 682-685. https://doi.org/10.1016/j.cell.2010.08.011
  9. Li, B., Carey, M., and Workman, J.L. 2007. The role of chromatin during transcription. Cell 128, 707-719. https://doi.org/10.1016/j.cell.2007.01.015
  10. Mosiman, C., Hausmann, G., and Basler, K. 2006. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 125, 327-341. https://doi.org/10.1016/j.cell.2006.01.053
  11. Mosimann, C., Hausmann, G., and Basler, K. 2009. The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control. Mech. Dev. 126, 394-405. https://doi.org/10.1016/j.mod.2009.02.002
  12. Mueller, C.L. and Jaehning, J.A. 2002. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22, 1971-1980. https://doi.org/10.1128/MCB.22.7.1971-1980.2002
  13. Newey, P.J., Bowl, M.R., and Thakker, R.V. 2009. Parafibromin-functional insights J. Intern. Med. 266, 84-98. https://doi.org/10.1111/j.1365-2796.2009.02107.x
  14. Ng, H.H., Robert, F., Young, R.A., and Struhl, K. 2003a. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell. 11, 709-719. https://doi.org/10.1016/S1097-2765(03)00092-3
  15. Ng, H.H., Dole, S., and Struhl, K. 2003b. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J. Biol. Chem. 278, 33625-33628. https://doi.org/10.1074/jbc.C300270200
  16. Nordick, K., Hoffman, M.G., Betz, J.L., and Jaehning, J.A. 2008. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of paf1 from RNA polymerase II. Eukaryot. Cell. 7, 1158-1167. https://doi.org/10.1128/EC.00434-07
  17. Penheiter, K.L., Washburn, T.M., Porter, S.E., Hoffman, M.G., and Jaehning, J.A. 2005. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol. Cell 20, 213-223. https://doi.org/10.1016/j.molcel.2005.08.023
  18. Peterson, C.L. 2002. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 12, R245-247. https://doi.org/10.1016/S0960-9822(02)00782-0
  19. Piro, A.S., Mayekar, M.K., Warner, M.H., Davis, C.P., and Arndt, K.M. 2012. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proc. Natl. Acad. Sci. USA 109, 10837-10842. https://doi.org/10.1073/pnas.1116994109
  20. Schneider, J., Wood, A., Lee, J.S., Schuster, R., Dueker, J., Maguire, C., Swanson, S.K., Florens, L., Washburn, M.P., and Shilatifard, A. 2005. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell. 19, 849-856. https://doi.org/10.1016/j.molcel.2005.07.024
  21. Shilatifard, A. 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression Annu. Rev. Biochem. 75, 243-269. https://doi.org/10.1146/annurev.biochem.75.103004.142422
  22. Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65-95. https://doi.org/10.1146/annurev-biochem-051710-134100
  23. Smith, E., Lin, C., and Shilatifard, A. 2011. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661-672. https://doi.org/10.1101/gad.2015411
  24. Squazzo, S.L., Costa, P.J., Lindstrom, D.L., Kumer, K.E., Simic, R., Jennings, J.L., Link, A.J., Arndt, K.M., and Hartzog, G.A. 2002. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21, 1764-1774. https://doi.org/10.1093/emboj/21.7.1764
  25. Tomson, B.N., Crisucci, E.M., Heisler, L.E., Gebbia, M., Nislow, C., and Arndt, K.M. 2013. Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol. Cell. Biol. 33, 170-182. https://doi.org/10.1128/MCB.01233-12
  26. Tomson, B.N., Davis, C.P., Warner, M.H., and Arndt, K.M. 2011. Identification of a role for histone H2B ubiquitination in noncoding RNA 3'-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae. Genetics 188, 273-289. https://doi.org/10.1534/genetics.111.128645
  27. Warner, M.H., Roinick, K.L., Arndt, K.M. 2007. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol. Cell. Biol. 27, 6103-6115. https://doi.org/10.1128/MCB.00772-07
  28. Wood, A., Schneider, J., Dover, J., Johnston, M., and Shilatifard, A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739-34742. https://doi.org/10.1074/jbc.C300269200
  29. Xiao, T., Kao, C.F., Krogan, N.J., Sun, Z.W., Greenblatt, J.F., Osley, M.A., and Strahl, B.D. 2005. Histone H2B ubiquitination is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637-651. https://doi.org/10.1128/MCB.25.2.637-651.2005
  30. Zhang, Y., Sikes, M.L., Beyer, A.L., and Schneider, D.A. 2009. The paf1 complex is required for efficient transcription elongation by RNA polymerase I Proc. Natl. Acad. Sci. USA 106, 2153-2158. https://doi.org/10.1073/pnas.0812939106