DOI QR코드

DOI QR Code

Characteristics of Cr(III)-based Conversion Coating Solution to Apply Aluminum Alloys for Improving Anti-corrosion Properties

  • Received : 2016.12.07
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

It is imperative to find environment-friendly coatings as an alternative to the currently used hexavalent chromate conversion coatings for the purpose of improving the anti-corrosion properties of aluminum alloys. Hence, in this study, the corrosion properties of a trivalent chromate conversion coating solution are analyzed and measured. Because of the presence of multiple components in trivalent chromate conversion coating solutions, it is difficult to control plating, attributed to their mutual organic relationship. It is of significance to determine the concentrations of the components present in these coatings; hence, qualitative and quantitative analysis is required. The coating solution contained not only an environment-friendly component chromium(III), but also zirconium, fluorine, sulfur, and potassium, in the coating film. These metals are confirmed to produce a film with improved corrosion resistance to form a thin layer. The excellent corrosion resistance for the trivalent chromate solution is attributed to various inorganic and organic additives.

Keywords

References

  1. H. A. Katzman and G. M. Malouf, "Corrosion-Protective chromate coatings on aluminum", Appl. Surf. Sci., 2, 416 (1979). https://doi.org/10.1016/0378-5963(79)90073-4
  2. Y. Totik, R. Sadeler, I. Kaymaz and M. Gavgali, "The effect of homogenisation treatment on cold deformations of AA 2014 and AA 6063 alloys", J. Mater. Process. Technol., 147, 60 (2004). https://doi.org/10.1016/j.jmatprotec.2003.10.026
  3. B. J. Cho, T. Y. Kwon, H. M. Kim, P. Venkatesh, M. S. Park and J. G. Park, "Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications", J. Microelectron. Packag. Soc., 19(1), 61 (2012). https://doi.org/10.6117/kmeps.2012.19.1.061
  4. S. Y. Park and J. H. Lee, "Electrodeposition of Nano $TiO_2$ Powder Dispersed Nickel Composite Coating", J. Microelectron. Packag. Soc., 19(4), 65 (2012). https://doi.org/10.6117/kmeps.2012.19.4.065
  5. U. S. Public Health Service, "Toxicological profile for chromium", ATSDR (2012).
  6. S. M. Cohen, "Review: Replacements for Chromium Pretreatments on Aluminum", Corrosion, 51, 71 (1995). https://doi.org/10.5006/1.3293580
  7. S. W. Kim and C. T. Lee, "Environment-friendly Trivalent Chromate Treatment for Zn Electroplating", J. Korean Ind. Eng. Chem., 17(5), 433 (2006).
  8. O. Lunder, C. Simensen, Y. Yu and K. Nisancioglu, "Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium", Surf. Coat. Technol., 184, 278 (2009).
  9. H. Allachi, F. Chaouket and K. Draoui, "Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides", J. Alloys. Compd., 491, 223 (2010). https://doi.org/10.1016/j.jallcom.2009.11.042
  10. A. Sharma and J. P. Jung "Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 1 (2015). https://doi.org/10.6117/kmeps.2015.22.4.001
  11. J. Hu, X. H. Zhao, S. W. Tang and M. R. Sun, "Corrosion protection of aluminum borate whisker reinforced AA6061 composite by cerium oxide-based conversion coating", Surf. Coat. Technol., 201, 3814 (2006). https://doi.org/10.1016/j.surfcoat.2006.09.006
  12. S. J. Lee and J. W. Yun, "$Ce_{0.8}Sm_{0.2}O_2$ Sol-gel Modification on $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ Cathode for Intermediate Temperature Solid Oxide Fuel Cell", J. Microelectron. Packag. Soc., 22(4), 77 (2015). https://doi.org/10.6117/kmeps.2015.22.4.077
  13. R. L. Twite and G. P. Bierwagen, "Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys", Prog. Org. Coat., 33, 91 (1998). https://doi.org/10.1016/S0300-9440(98)00015-0
  14. B. Ramezanzadeh, M. M. Attar and M. Farzam, "Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings", Surf. Coat. Technol., 205, 874 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.028
  15. T. Bellezze, G. Roventi and R. Fratesi, "Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings", Surf. Coat. Technol., 155, 221 (2002). https://doi.org/10.1016/S0257-8972(02)00047-6
  16. X. Zhang, C. van den Bos, W. G. Sloof, A. Hovestad, H. Terryn and J. H. W. de Wit, "Comparison of the morphology and corrosion performance of Cr(VI)- and Cr(III)-based conversion coatings on zinc", Surf. Coat. Technol., 199, 92 (2005). https://doi.org/10.1016/j.surfcoat.2004.12.002
  17. P. Campestrini, G. Goeminne, H. Terryn, J. Vereecken and J. H. W. de Wit, "Chromate Conversion Coating on Aluminum Alloys: I. Formation Mechanism", J. Electrochem. Soc., 151, B59 (2004). https://doi.org/10.1149/1.1637355
  18. P. L. Hagans and C. M. Hass, "Chromate Conversion Coatings", Surface Engineering (Materials Park, OH: ASM International, 1987), 405 (1994).
  19. J. Zhao, L. Xia, A. Sehgal, D. Lu, R. L. McCreery and G. S. Frankel, "Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3", Surf. Coat. Technol., 140, 51 (2001). https://doi.org/10.1016/S0257-8972(01)01003-9
  20. P. Campestrini, H. Terryn, J. Vereecken and J. H. W. de Wit, "Chromate Conversion Coating on Aluminum Alloys III. Corrosion Protection", J. Electrochem. Soc., 151, B370 (2004). https://doi.org/10.1149/1.1736683
  21. W. K. Chen, J. L. Lee, C. Y. Bai, K. H. Hou and M. D. Ger, "Growth and characteristics of Cr(III)-based conversion coating on aluminum alloy", J. Taiwan. Inst. Chem. Eng., 43, 989 (2012). https://doi.org/10.1016/j.jtice.2012.05.007
  22. ASTM G102-89, "Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements", Reapproved 1999 (1999).
  23. H. C. Yu, B. Z. Chen, X. Shi, X. Sun and B. Li, "Investigation of the trivalent-chrome coating on 6063 aluminum alloy", Mater. Lett., 62, 2828 (2008). https://doi.org/10.1016/j.matlet.2008.01.056
  24. Y. S. Kim and D. N. Yook, "Influences of Chromate Coating Conditions in the Surface Appearance and Corrosion Resistance of Aluminium Alloys for Can-stock", J. Corros Sci. Soc. of Korea, 25(2), 180 (1996).
  25. W. K. Chen, C. Y. Baib, C. M. Liu, C. S. Lin and M. D. Ger, "The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys", Appl. Surf. Sci., 256, 4924 (2010). https://doi.org/10.1016/j.apsusc.2010.03.003
  26. T. Y. Chiang, A. Su, L. C. Tsai, H. H. Sheu and C. E. Lu, "Corrosion Resistance of 5052 Al-alloy with a Zirconia-Rich Conversion Coating Used in Bipolar Plates in PEMFCs", Int. J. Electrochem. Sci., 9, 5850 (2014).
  27. P. Campestrini, H. Terryn, J. Vereecken and J. H. W. de Wit, Chromate Conversion Coating on Aluminum Alloys II: Effect of the Microstructure", J. Electrochem. Soc., 151, B359 (2004). https://doi.org/10.1149/1.1736682
  28. Z. Yu, H. Ni, G. Zhang and Y. Wang, "A study of the composition and structure of chromate conversion coating on aluminum", Appl. Surf. Sci., 62, 217 (1992).
  29. C. T. Lee, "Enlargement of Anti-corrosion of Zinc Plating by the Trivalent Chromium Sulfate Conversion Coating", J. Korean Ind. Eng. Chem., 18(3), 296 (2007).