DOI QR코드

DOI QR Code

A Study on the Effects of Surface Patterns on Droplet Impingement Behaviors

액적 충돌 거동에 대한 표면 패턴의 영향에 관한 연구

  • Jeon, Min Kyeong (Department of Opto-Mechatronics Engineering, Pusan National University) ;
  • Kim, Doo-In (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University) ;
  • Kang, Shinill (National Center for Optically-assisted Mechanical Systems, School of Mechanical Engineering, Yonsei University) ;
  • Jeong, Myung Yung (Department of Opto-Mechatronics Engineering, Pusan National University)
  • 전민경 (부산대학교 광메카트로닉스공학과) ;
  • 김두인 (부산대학교 BK21+ 나노융합인지메카트로닉스공학 사업단) ;
  • 강신일 (연세대학교 기계공학부, 초정밀광기계기술 연구센터) ;
  • 정명영 (부산대학교 광메카트로닉스공학과)
  • Received : 2016.12.13
  • Accepted : 2016.12.26
  • Published : 2016.12.31

Abstract

In this paper, the hydrophobic rough surfaces were prepared by employing a conventional nano-imprint lithography technique, and the effects of surface parameter, ratio of the top surface to the flat unit cell, on the impingement behaviors of liquid droplet were investigated to improve robustness of hydrophobic functionality. The critical height defined for the transition from rebound to fragmentation is measured by droplet impingement test in order to study dynamic behavior of an impinged droplet. It showed the critical height decreased with high surface parameter while it increased with low surface parameter. However, the critical height decreased again as surface parameter decreased further. Observed results suggest that the optimized surface pattern should be designed for the increased critical height.

본 논문에서는 나노임프린트 리소그래피 기술을 이용하여 다양한 발수 표면을 제작하였으며, 발수기능의 안정성을 향상시키기 위해 액적의 충돌 거동에 대하여 평탄한 단위면적에 대한 구조물의 면적비인 표면 변수의 영향에 대한 연구를 수행하였다. 액적의 충돌 거동을 연구하기 위해 액적 충돌 시험을 통하여 충돌한 액적이 되튐에서 분산으로 천이 되는 임계높이를 측정하였다. 높은 표면 변수에서는 낮은 임계높이가 관찰되었으나, 낮은 표면변수에서는 임계높이가 증가하는 경향을 관찰하였다. 그러나, 표면변수가 더욱 감소할 경우 임계높이가 다시 감소하는 경향을 보였다. 관찰된 결과는 높은 임계높이를 위해서는 최적의 표면 형상 설계가 요구됨을 제시하고 있다.

Keywords

References

  1. C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao and Z. Wang, "Bioinspired Interfacial Materials with Enhanced Drop mobility: From Fundamentals to Multifunctional Applications", Small, 12(14), 1825 (2016). https://doi.org/10.1002/smll.201503060
  2. B. Bhushan, K. Koch and Y. C. Jung, "Fabrication and chracterization of the hierarchical structure for superhydrophobicity and self-cleaning", Ultramicroscopy, 109, 1029 (2009). https://doi.org/10.1016/j.ultramic.2009.03.030
  3. H. Kim, S. Lee, C. Lee, M. H. Kim and J. Kim, "Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and its impact behaviors of a shooting water droplet" (in Kor.), Journal of the Korean Society for Precision Engineering, 29(9), 1020 (2012). https://doi.org/10.7736/KSPE.2012.29.9.1020
  4. K. K. Varanasi, T. Deng, M. F. Hsu and N. Bhate, "Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance", Proc. ASME International Mechanical Engineering Congress and Exposition (IMECE), (2008).
  5. R. Kannan, D. Sivakumar, "Drop impact process on a hydrophobic grooved surface", Colloids. Surf. A Physicochem. Eng. Asp., 317, 694 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.005
  6. J. Lee and S. Lee, "Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textures surfaces", Langmuir, 27, 6565 (2011). https://doi.org/10.1021/la104829x
  7. J. Park, N. Cha, H. Shin and J. Park, Characterization of fluorocarbon thin films by contact angle measurements, J. Microelectron. Packag. Soc. 6(1), 39 (1999).
  8. C. W. Wisser, Y. Tagawa, C. Sun and D. Lohse, "Microdroplet impact at very high velocity", Soft Matter, 8, 10732 (2012). https://doi.org/10.1039/c2sm26323h
  9. Y. Liu, L. Moevious, X. Xu, T. Qian, J. M. Yeomans and Z. Wang, "Pancake bouncing on superhydrophobic surfaces", Nat. Phys., 10, 515 (2014). https://doi.org/10.1038/nphys2980
  10. J. C. Bird, R. Dhiman, H. Kwon, and K. K. Varanasi, "Reducing the contact time of a bouncing drop", Nat., 503, 385 (2013). https://doi.org/10.1038/nature12740
  11. R. Rioboo, M. Vou, A. Vaillant and J. D. Coninck, "Drop impact on porous superhydrophobicity polymer surfaces", Langmuir, 24(24), 14074 (2008). https://doi.org/10.1021/la802897g
  12. D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, "Bouncing or sticky droplets : Impalement transitions on superhydrophobic micropatterned surfaces", Europhys. Lett., 74(2), 299 (2006). https://doi.org/10.1209/epl/i2005-10522-3
  13. H. Teisala, M. Tuominent, M. Amromaa, M. Stephan, J. M. Makela and J. J. Saarinen, "Nanostructures increase water droplet adheison on hierachically rough superhydrophobic surfaces", Langmuir, 28(6), 3138 (2012). https://doi.org/10.1021/la203155d
  14. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces", Langmuir, 16(13), 5754 (2000). https://doi.org/10.1021/la991660o
  15. W. Cho, S. Cho, D. Kim and M. Jeong, "Effects of static contact angle and roughness on rolling resistance on rolling resistance of droplet", J. Microelectron. Packag. Soc., 23(1), 23 (2016). https://doi.org/10.6117/kmeps.2016.23.1.023
  16. N. D. Patil, R. Bhardwaj and A. Sharma, "Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces", Exp. Therm. Fluid. Sci., 74, 195 (2016). https://doi.org/10.1016/j.expthermflusci.2015.12.006
  17. A. Frohn and N. Roth, "Dynamics of Droplets", Springer Science & Business, 15 (2000).
  18. S. Arnold, "A Contribution to Hydrodynamic Explanation of Turbulent Fluid Motions", International Congress of Mathematics, 3, 116 (1908).
  19. S. Leclear, J. Leclear, Abhijeet, K. Park and W. Choi, "Drop impact on inclined superhydrophobic surfaces", J. Colloid. Interface. Sci., 461, 114 (2016). https://doi.org/10.1016/j.jcis.2015.09.026
  20. M. S. Lee, S. D. Baek, D. H. Kim, T. H. Sung and K. C. Kim, "Dynamic benavior of droplet impinging onto a slender circular cylinder"(in Kor.), Trans. Korean. Soc. Mech. Eng., 11, 1732 (2014).
  21. S. M. An, and S. Y. Lee, "Assessment of Maximm Spreading Models for a Newtonian Droplet Impacting on a Solid Surface"(in Kor.), Trans. Korean. Soc. Mech. Eng., 36(6), 633 (2012). https://doi.org/10.3795/KSME-B.2012.36.6.633
  22. S. M. An and S. Y. Lee, "Examination of spread-recoil behavior of a shear-thining liquid drop on a dry wall", Journal of ILASS-KOREA, 14(3), 131 (2009)
  23. S. U. Cho, D. I. Kim, W. K. Cho, B. S. Shin and M. Y. Jeong, "Diverging Effects of Topographical Continuity on the Wettability of a Rough Surface", A C S Applied Materials and Interfaces, 8(43), 29770 (2016). https://doi.org/10.1021/acsami.6b09541
  24. R. Crooks, J. J. Cooper-Whitez and D. V. Boger, "The rule of dynamic surface tension and elasticity on the dynamics of drop impact", Chem. Eng. Sci., 56(19), 5575 (2001). https://doi.org/10.1016/S0009-2509(01)00175-0
  25. G. Vazquez, E. Alvarez and J. M. Navaza, "Surface tension of alcohol + water from 20 to $50^{\circ}C$", J. Chem. Eng. Data., 40, 611 (1995). https://doi.org/10.1021/je00019a016