DOI QR코드

DOI QR Code

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis

열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석

  • Received : 2016.11.18
  • Accepted : 2016.12.20
  • Published : 2016.12.28

Abstract

Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

300 m 이상의 장심도 지중열교환기는 도심지나 넓은 부지를 확보가기 어려운 지역에 지열냉난방 시스템을 경제적으로 설치하는데 유리하다. 그러나 실제 시공에서는 여러 가지 문제들로 인하여 보편적으로 시도되지 않았고, 일반적으로 100 ~ 200m 심도로 설치되어 왔다. 본 연구에서는 일반적인 시추공 직경 150 mm에 U 파이프는 50A 규격으로 외경 50 mm의 300 m 심도로 지중열교환기를 설치하였다. 고밀도 PE관은 단위 길이당 비중이 $0.94{\sim}0.96g/cm^3$으로 지열공 내부에 채워진 지하수 영향으로 부력이 존재하여, 이를 개선하기 위해 4.6 kg 무게의 금속으로 제작된 하중밴드 10개조를 설치하여 부력의 영향을 감소시켰다. 지중열교환기의 길이 산정 및 성능평가를 위한 기초조사로서 지반조사 및 열응답실험이 실시되었다. 지반내 온도구배는 100 m 심도까지는 주변 지하수 이용에 의한 영향 등으로 $15^{\circ}C$ 정도의 분포를 보이며 그 하부는 $1.9^{\circ}C/100m$의 지온증온율을 나타내고 있다. 열응답실험은 기존에 설정된 표준 방식으로 48 시간 진행되었으며 평균 주입전력은 17.5 kW이며 평균 순환수 유량은 28.5 l/min, 그리고 평균 입출구 온도차는 $8.9^{\circ}C$로 나타났다. 측정된 지중열전도도는 3.0 W/mk이며, 공내열저항은 0.104 mk/W로 나타났다. Stepwise 평가에서 지중열전도도 변화는 초기 13시간을 제외한 이후에는 표준편차가 0.16으로 매우 안정된 값으로 수렴한 것으로 나타났다. 그리고 공내열저항의 민감도를 분석한 결과 파이프의 구경과 그라우팅 물질의 열전도도가 증가함에 따라 그 값이 미미하게 감소하는 경향을 나타내었다.

Keywords

References

  1. MOTIE (Ministry of Trade, Industry and Energy), The second national energy master plan, 2014.
  2. Lee, Dae-sung, Korea Institute of Geoscience and Mineral Resources, Geological map of Korea, 1:50,000, 1974.
  3. Cho, Heuy-Nam, Lee, Dal-Heui and Jeong, Gyo-Cheol, Efficiency of geothermal energy generation assessed from measurements of deep depth geothermal conductivity, The Journal of Engineering Geology, Vol.22, No.2, pp. 233-241, 2012. https://doi.org/10.9720/kseg.2012.22.2.233
  4. Austin WA. Development of an in-situ system for measuring ground thermal properties. Master's thesis. Oklahoma State University. USA, 1998.
  5. Focaccia S., Thermal response test numerical modeling using a dynamic simulator, Geothermal Energy, 1:3, 2013. https://doi.org/10.1186/2195-9706-1-3
  6. Gehlin S. Thermal response test: method development and evaluation. Ph.D. thesis. Lulea University of Technology; 2002.
  7. Kavanaugh S, Xie L, and Martin C. Investigation of methods for determining soil and rock formation thermal properties from short term field tests. Final Report for ASHRAE TRP-1118, 2000.
  8. Koenig A., Thermal resistance of borehole heat exchangers composed of multiple loops and custom shapes. Geothermal Energy, 3:10, 2015. https://doi.org/10.1186/s40517-015-0029-1
  9. Koenig, A., and M. Helmke. ''Development of a thermal resistance model to evaluate wellbore heat exchange efficiency.'' Int J Energy Environ 5.3, 297-304, 2014.
  10. Raymond J, Therrien R, Gosselin L, and Lefebvre R. A review of thermal response test analysis using pumping test concepts. Ground Water, 49:932-45, 2011. https://doi.org/10.1111/j.1745-6584.2010.00791.x
  11. Sanner B, Mands E, Sauer M, and Grundmann E. Technology, development status, and routine application of thermal response test. In: Proceedings of EGC; 2007.
  12. Shim B.O., and Park C.-H., Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea, Energy, 56, 167-174, 2013. https://doi.org/10.1016/j.energy.2013.04.059
  13. Signorelli S., Simone Bassetti, Daniel Pahud, and Thomas Kohl, Numerical evaluation of thermal response tests, Geothermics, Volume 36, Issue 2, Pages 141-166, 2007. https://doi.org/10.1016/j.geothermics.2006.10.006
  14. Wagner R, and Clauser C. Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity. Journal of Geophysics and Engineering, 2:349, 2005. https://doi.org/10.1088/1742-2132/2/4/S08