DOI QR코드

DOI QR Code

Study on Antibiotic Resistant Bacteria in Surface Water Receiving Pharmaceutical Complex Effluent

제약공단 방류수 유입 하천에서의 항생제 내성 bacteria에 관한 연구

  • Received : 2016.06.21
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

Objectives: The purpose of this study was to characterize penicillin G resistant bacteria in surface water from pharmaceutical complex effluent. Methods: Surface water was sampled from pharmaceutical complex effluent in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant bacteria were selected from the effluent and subjected to 16S rRNA analysis for the penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant bacteria were present at 8.0% in terms of culturable heterotrophic bacteria. Identified penicillin G resistant bacteria exhibited resistance to more than nine of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the surface water of pharmaceutical complex effluent suggest the need for disinfection and advanced oxidation processed for pharmaceutical effluent.

Keywords

References

  1. Heuer H, Krogerrecklenfort E, Wellington EMH, Egan S, van Elsaa JD, van Overbeek L, et al. Gentamicin resistance in environmental bacteria : prevalence and transfer. FEMS Microbio Ecol. 2002; 42: 289-302. https://doi.org/10.1111/j.1574-6941.2002.tb01019.x
  2. Kummerer K. Significance of antibiotics in the environment. J Antimicrobial Chemotherapy. 2003; 52: 5-7. https://doi.org/10.1093/jac/dkg293
  3. Kim YJ, Kim JG, Kim JO. Study on Antibiotic Resistant Bacteria in Hospital Effluent. J. Korea Soc Environ Admin. 2015; 21(1): 23-30.
  4. Larsson DGK. Pollution from drug manufacturing: review and perspectives, Available: http://rstb.royalssocietypublishing.org [assessed 9 February 2015]
  5. Kim JG, Kim YJ. Study on Antibiotic Resistant Enterobacteria in Pharmaceutical Effluent. J. Environ Health Sci. 2016; 42(1): 34-40.
  6. National Institute of Environmental Research. Available: http://img.kisti.re.kr/originalView/originalView.jsp [accessed 20 May 2016]
  7. Andreozzi R, Raffaele M, Nicklas P. Pharmapeutical in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 2003; 50: 1319-1330. https://doi.org/10.1016/S0045-6535(02)00769-5
  8. Ministry of Environment.Available:http://www.law.go.kr/DRF/lawService.do?OC=jaa806&target=law&MST=166074&type=HTML&mobileYn=&efYd=20150101 [accessed 20 May 2016]
  9. Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 23rd informational supplement: M100-S23. Wayne, PA: Clinical Laboratory Standards Institute; 2013.
  10. QIAGEN. DNeasy(R) Blood & Tissue Handbook. Available;https://www.qiagen.com/kr/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en [assessed 12 February 2016]
  11. Giobannoni SJ, Rappe MS, Vergin KL, Adair NL. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc National Acad Sci 1996;93:7979-7984. https://doi.org/10.1073/pnas.93.15.7979
  12. Sutter VL, Kwock YY, Finegold SM. Susceptibility of Bacteroides fragilis to Six Antibiotics Determined by Standardized Antimicrobial Disc Susceptibility Testing. Antimicrob Agents Chemother 1973; 3(2): 188-193. https://doi.org/10.1128/AAC.3.2.188
  13. Finlay JE, Miller LA, Poupard JA. Interpretive criteria for testing susceptibility of staphylococci to mupirocin. Antimicrob. Agents Chemother 1997; 41(5): 1137-1139.
  14. Levy SB, Marshall B. Antibacterial resistance worldwide. Nat Med. 2004; 10(12): 122-129. https://doi.org/10.1038/nm0204-122
  15. Kim YJ, Kim JO. Study on Oxytetracycline Resistant Bacteria in the Surface Water Environment. J Environ Health Sci 2015; 41(1): 40-48.
  16. Oh HK, Park JH. Characteristics of Antibiotic Resistant Bacteria in Urban Sewage and River. Journal of KSEE. 2009; 31(3): 232-239.
  17. Janda JM, Abbott SL. The Genus Aeromonas: Taxonomy, Pathogenicity and Infection. Clin Microbiol Rev 2010; 23(1): 35-73. https://doi.org/10.1128/CMR.00039-09
  18. Tewar R, Dudeja M, Nandy S, Das AK. Isolation of Aeromonas salmonicida from Human Blood Sample: A Case Report. J Clin Diag Res 2014; 8(2): 139-140.
  19. Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, et al. Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. J Vet Sci 2010; 12(1): 41-48. https://doi.org/10.4142/jvs.2011.12.1.41
  20. Hossain A, Ferraro MJ, Pino RM, Dew RB, Moland ES, Lockhart TJ, et al. Plasmid-Mediated Carbapenem-Hydrolyzing Enzyme KPC-2 in an Enterobacter sp. Antimicrob Agents Chemother 2004; 48(11): 4438-4440. https://doi.org/10.1128/AAC.48.11.4438-4440.2004
  21. Meireles C, Costa G, Guinote I, Albuquerque T, Botelno A, Corlos C, et al. Pseudomons putida are environmental reservoirs of antimicrobial resistance to ${\beta}$-lactamic antibiotics. World J Microbiol Biotechnol 2013; 29: 1317-1325. https://doi.org/10.1007/s11274-013-1295-3
  22. Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G, Toplitsch D, et al. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube. Front Microbiol. 2016; 7: 1-8.
  23. Andersen BM, Teige B, Hochlin K, Elsebutangen N, Fagerbakk L, Seljorslia B, et al. Failure of Ionised Water Produced by Activation Ionator to Kill Potential Harmful Bacteria. Microbial Biochem Technol 2012; 4(3): 82-85.
  24. https://microbewiki,kenyon,edu/index.php/Microvirgula_aerodenitrificans [assessed June 2016]
  25. Murphy ME, Goodson A, Malnick H, Shah J, Neelamkavil R, Devi R. Recurrent Microvirgula aerodenitrificans Bacteremia. J Clin Microbiol. 2012; 50(8): 2823-2825. https://doi.org/10.1128/JCM.00392-12
  26. Li J, Zhou L, Zhang X, Xu C, Dong L, Yao M. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atm Environ 2016; 124: 404-412 https://doi.org/10.1016/j.atmosenv.2015.06.030
  27. Kanki M, Tsukamoto T, Shbata T. Klebsiella pneumoniae produces no histamine: Raoutella plantico and Raoutella omithinolytica strains are histamine producers. Appl Environ Microbiol. 2014; 68(7): 305-312.
  28. Seng P, Boushab BM, Romain F, Gouriet F, Bruder N, Martin C, et al. Int J Infect Disease. 2016; 45: 65-71.
  29. https://microbewiki.kenyon.edu/index.php/Citrobacter_freundii [assessed 9 June 2016]
  30. Poirel L, Ros A, Carricajo A, Berthelot P, Pozzetto B, Bernabeu S, et al. Extremely Drug-Resistant Citrobacter freundii Isolate Producing NDM-1 and Other Carbapenemases Identified in a Patient Returning from India. Antimicrob Agents Chemother 2011; 55(1): 447-448. https://doi.org/10.1128/AAC.01305-10
  31. Sun LN, Zhang J, Chen Q, He J, Li QF, Li SP. Comamonas jiangduensis sp., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Systemic Evolu Microbiol. 2013; 63: 2168-2173. https://doi.org/10.1099/ijs.0.045716-0
  32. Cimmion T, Rolain JM. Whole genome sequencing for deciphering the resistant of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium from a cystic fibrosis patient in Marseille, France. New Microbe New Infect 2016; 12: 35-42. https://doi.org/10.1016/j.nmni.2016.03.006
  33. Baxter IA, Lambert PA, Simpson N. Isolation from clinical sources of Burkholeria cepacia possessing characteristics of Burkholderia gladioli. J Antimicrob Chemother 1997; 39: 169-175. https://doi.org/10.1093/jac/39.2.169
  34. Kawanishi T, Uematsu S, Nishimura K, Otani T, Tanaka-Miwa C, Hamamoto H, et al. A new selective medium for Burkholderia caryophylli, the causal agent of carnation bacterial wilt. Plant Pathology 2009; 58: 237-242. https://doi.org/10.1111/j.1365-3059.2008.01980.x
  35. Available : http://news.joins.com/article/19094395 [accessed 20 November 2015]
  36. Larsson DGJ, Pedro CD, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Materials 2007; 148: 751-755. https://doi.org/10.1016/j.jhazmat.2007.07.008
  37. Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D. Enviornmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta. 2006; 69: 334-342. https://doi.org/10.1016/j.talanta.2005.09.037
  38. G. Hey G, Grabic R, Ledin A, Jansen JLC, Andeson HR. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater. J Chem Eng . 2012; 185(5): 236-242.
  39. Santiago Esplugas S, Bila DM, Krause LGT, Dezotti M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Materials 2007; 149(3): 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
  40. Wellington EM, Boxall ABA, Cross P, Feil E, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistant in Gram-negative bacteria. Infect Dis 2013; 13(2); 155-165.
  41. Martin da Costa P, Loureiro L, Matos AJF. Transfer of Multidrug-Resistant Bacteria Between Intermingled Ecological Niches: The Interface Between Humans, Animals and the Environment. Int J Environ Res Public Health 2013; 10: 278-294. https://doi.org/10.3390/ijerph10010278