DOI QR코드

DOI QR Code

A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function

  • Received : 2016.09.21
  • Accepted : 2016.11.13
  • Published : 2016.12.31

Abstract

Around the world, fermentation of foods has been adopted over many generations, primarily due to their commercial significance with enriched flavors and high-profile nutrients. The increasing application of fermented foods is further promoted by recent evidence on their health benefits, beyond the traditionally recognized effects on the digestive system. With recent advances in the understanding of gut-brain interactions, there have also been reports suggesting the fermented food's efficacy, particularly for cognitive function improvements. These results are strengthened by the proposed biological effects of fermented foods, including neuroprotection against neurotoxicity and reactive oxygen species. This paper reviews the beneficial health effects of fermented foods with particular emphasis on cognitive enhancement and neuroprotective effects. With an extensive review of fermented foods and their potential cognitive benefits, this paper may promote commercially feasible applications of fermented foods as natural remedies to cognitive problems.

Keywords

References

  1. Hutkins RW. 2008. Microbiology and technology of fermented foods. 1st ed. Blackwell Publishing, Oxford, UK. p 15-66.
  2. Wang HY, Qi LW, Wang CZ, Li P. 2011. Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides. Am J Chin Med 39: 1103-1115. https://doi.org/10.1142/S0192415X11009433
  3. Lee JH, Lee JH, Jin JS. 2012. Fermentation of traditional medicine: present and future. Orient Pharm Exp Med 12: 163. https://doi.org/10.1007/s13596-012-0080-4
  4. Sekirov I, Russell SL, Antunes LC, Finlay BB. 2010. Gut microbiota in health and disease. Physiol Rev 90: 859-904. https://doi.org/10.1152/physrev.00045.2009
  5. Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-312. https://doi.org/10.1016/j.tins.2013.01.005
  6. Bienenstock J, Kunze W, Forsythe P. 2015. Microbiota and the gut-brain axis. Nutr Rev 73(S1): 28-31. https://doi.org/10.1093/nutrit/nuv019
  7. Dinan TG, Cryan JF. 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37: 1369-1378. https://doi.org/10.1016/j.psyneuen.2012.03.007
  8. Selhub EM, Logan AC, Bested AC. 2014. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 33: 2. https://doi.org/10.1186/1880-6805-33-2
  9. Hasler CM. 2002. Functional foods: benefits, concerns and challenges-a position paper from the American Council on Science and Health. J Nutr 132: 3772-3781. https://doi.org/10.1093/jn/132.12.3772
  10. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP. 2001. Market potential for probiotics. Am J Clin Nutr 73: 476s-483s. https://doi.org/10.1093/ajcn/73.2.476s
  11. Bruel-Jungerman E, Lucassen PJ, Francis F. 2011. Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 221: 379-388. https://doi.org/10.1016/j.bbr.2011.01.021
  12. Collerton D. 1986. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19: 1-28. https://doi.org/10.1016/0306-4522(86)90002-3
  13. Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695. https://doi.org/10.1126/science.7901908
  14. Mattson MP. 2004. Pathways towards and away from Alzheimer's disease. Nature 430: 631-639. https://doi.org/10.1038/nature02621
  15. Jain KK. 2010. The handbook of biomarkers. 1st ed. Humana Press, Inc., Totowa, NJ, USA. p 115-396.
  16. Jain KK. 2011. The handbook of neuroprotection. 1st ed. Humana Press, Inc., Totowa, NJ, USA. p 281-365.
  17. Lehtinen MK, Bonni A. 2006. Modeling oxidative stress in the central nervous system. Curr Mol Med 6: 871-881. https://doi.org/10.2174/156652406779010786
  18. Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. 2005. Cell culture models of oxidative stress and injury in the central nervous system. Curr Neurovasc Res 2: 73-89. https://doi.org/10.2174/1567202052773463
  19. Humpel C. 2011. Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol 29: 26-32. https://doi.org/10.1016/j.tibtech.2010.09.007
  20. Bushnell PJ. 2001. Advanced behavioral testing in rodents: assessment of cognitive function in animals. Curr Protoc Toxicol 00:11.4:11.4.1-11.4.34.
  21. Farnworth ER. 2008. Handbook of fermented functional foods. 2nd ed. CRC Press, Boca Raton, FL, USA. p 1-494.
  22. Camfield DA, Owen L, Scholey AB, Pipingas A, Stough C. 2011. Dairy constituents and neurocognitive health in ageing. Br J Nutr 106: 159-174. https://doi.org/10.1017/S0007114511000158
  23. Ozawa M, Ninomiya T, Ohara T, Doi Y, Uchida K, Shirota T, Yonemoto K, Kitazono T, Kiyohara Y. 2013. Dietary patterns and risk of dementia in an elderly Japanese population: the Hisayama Study. Am J Clin Nutr 97: 1076-1082. https://doi.org/10.3945/ajcn.112.045575
  24. Ano Y, Kutsukake T, Hoshi A, Yoshida A, Nakayama H. 2015. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS One 10: e0116598. https://doi.org/10.1371/journal.pone.0116598
  25. Ano Y, Ozawa M, Kutsukake T, Sugiyama S, Uchida K, Yoshida A, Nakayama H. 2015. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One 10: e0118512. https://doi.org/10.1371/journal.pone.0118512
  26. Liu TH, Chiou J, Tsai TY. 2016. Effects of Lactobacillus plantarum TWK10-fermented soymilk on deoxycorticosterone acetate-salt-induced hypertension and associated dementia in rats. Nutrients 8: 260. https://doi.org/10.3390/nu8050260
  27. Ohsawa K, Uchida N, Ohki K, Nakamura Y, Yokogoshi H. 2015. Lactobacillus helveticus-fermented milk improves learning and memory in mice. Nutr Neurosci 18: 232-240. https://doi.org/10.1179/1476830514Y.0000000122
  28. Kato-Kataoka A, Nishida K, Takada M, Suda K, Kawai M, Shimizu K, Kushiro A, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Kuwano Y, Rokutan K. 2016. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes 7: 153-156. https://doi.org/10.3920/BM2015.0100
  29. Go J, Kim JE, Kwak MH, Koh EK, Song SH, Sung JE, Kim DS, Hong JT, Hwang DY. 2015. Neuroprotective effects of fermented soybean products (Cheonggukjang) manufactured by mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 on trimethyltin-induced cognitive defects mice. Nutr Neurosci 19: 247-259.
  30. Yang HJ, Kwon DY, Kim HJ, Kim MJ, Jung DY, Kang HJ, Kim DS, Kang S, Moon NR, Shin BK, Park S. 2015. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer's type dementia. Eur J Nutr 54: 77-88. https://doi.org/10.1007/s00394-014-0687-y
  31. Yoo DH, Kim DH. 2015. Lactobacillus pentosus var. plantarum C29 increases the protective effect of soybean against scopolamine-induced memory impairment in mice. Int J Food Sci Nutr 66: 912-918. https://doi.org/10.3109/09637486.2015.1064865
  32. Hogervorst E, Sadjimim T, Yesufu A, Kreager P, Rahardjo TB. 2008. High tofu intake is associated with worse memory in elderly indonesian men and women. Dement Geriatr Cogn Disord 26: 50-57. https://doi.org/10.1159/000141484
  33. Lee CL, Kuo TF, Wu CL, Wang JJ, Pan TM. 2010. Red mold rice promotes neuroprotective sappalpha secretion instead of Alzheimer's risk factors and amyloid beta expression in hyperlipidemic $A{\beta}40$-infused rats. J Agric Food Chem 58: 2230-2238. https://doi.org/10.1021/jf904027y
  34. Lee CL, Kuo TF, Wang JJ, Pan TM. 2007. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation. J Neurosci Res 85: 3171-3182. https://doi.org/10.1002/jnr.21428
  35. Lee CL, Wang JJ, Pan TM. 2008. Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and antioxidative effect. Appl Microbiol Biotechnol 79: 829-841. https://doi.org/10.1007/s00253-008-1480-8
  36. Lee BH, Ho BY, Wang CT, Pan TM. 2009. Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of zinc-deficient rats. J Agric Food Chem 57: 10600-10607. https://doi.org/10.1021/jf902046s
  37. Tseng WT, Hsu YW, Pan TM. 2016. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease. Food Funct 7: 752-762. https://doi.org/10.1039/C5FO00976F
  38. Lin CM, Lin YT, Lin RD, Huang WJ, Lee MH. 2015. Neurocytoprotective effects of aliphatic hydroxamates from Lovastatin, a secondary metabolite from Monascus-fermented red mold rice, in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. ACS Chem Neurosci 6: 716-724. https://doi.org/10.1021/cn500275k
  39. Ou HP, Wang MF, Yang SC, Yamamoto S, Wang CCR. 2007. Effect of Monascus-fermented products on learning and memory in the SAMP8 mice. J Nutr Sci Vitaminol 53: 253-260. https://doi.org/10.3177/jnsv.53.253
  40. Tseng WT, Hsu YW, Pan TM. 2016. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. Pharm Biol 54: 1434-1444. https://doi.org/10.3109/13880209.2015.1104698
  41. Kanouchi H, Kakimoto T, Nakano H, Suzuki M, Nakai Y, Shiozaki K, Akikoka K, Otomaru K, Nagano M, Matsumoto M. 2016. The brewed rice vinegar Kurozu increases HSPA1A expression and ameliorates cognitive dysfunction in aged P8 mice. PLoS One 11: e0150796. https://doi.org/10.1371/journal.pone.0150796
  42. Hossen MJ, Kim MY, Kim JH, Cho JY. 2016. Codonopsis lanceolata: a review of its therapeutic potentials. Phytother Res 30: 347-356. https://doi.org/10.1002/ptr.5553
  43. He X, Zou Y, Yoon WB, Park SJ, Park DS, Ahn J. 2011. Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. J Biosci Bioeng 112: 188-193. https://doi.org/10.1016/j.jbiosc.2011.04.003
  44. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2014. Cognitive-enhancing effect of steamed and fermented Codonopsis lanceolata: a behavioral and biochemical study. Evid Based Complement Alternat Med 2014: 319436.
  45. Weon JB, Lee BH, Yun BR, Lee JW, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2013. Memory enhancing effect of Codonopsis lanceolata by high hydrostatic pressure process and fermentation. Korean J Pharmacogn 44: 41-46.
  46. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Kim JS, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2013. Effect of Codonopsis lanceolata with steamed and fermented process on scopolamine-induced memory impairment in mice. Biomol Ther 21: 405-410. https://doi.org/10.4062/biomolther.2013.055
  47. Weon JB, Yun BR, Lee J, Eom MR, Kim JS, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2013. The ameliorating effect of steamed and fermented Codonopsis lanceolata on scopolamine-induced memory impairment in mice. Evid Based Complement Alternat Med 2013: 464576.
  48. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2014. Neuroprotective effect of steamed and fermented Codonopsis lanceolata. Biomol Ther 22: 246-253. https://doi.org/10.4062/biomolther.2014.019
  49. Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  50. Kim J, Kim SH, Lee DS, Lee DJ, Kim SH, Chung S, Yang HO. 2013. Effects of fermented ginseng on memory impairment and $\beta$-amyloid reduction in Alzheimer's disease experimental models. J Ginseng Res 37: 100-107. https://doi.org/10.5142/jgr.2013.37.100
  51. Tasi YC, Chin TY, Chen YJ, Huang CC, Lee SL, Wu TY. 2015. Potential natural products for Alzheimer's disease: targeted search using the internal ribosome entry site of tau and amyloid-$\beta$ precursor protein. Int J Mol Sci 16: 8789-8810. https://doi.org/10.3390/ijms16048789
  52. Hermawati E, Sari DC, Partadiredja G. 2015. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats. Anat Sci Int 90: 275-286. https://doi.org/10.1007/s12565-014-0262-x
  53. Yang EJ, Kim SI, Park SY, Bang HY, Jeong JH, So JH, Rhee IK, Song KS. 2012. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content. Food Chem Toxicol 50: 2042-2048. https://doi.org/10.1016/j.fct.2012.03.065
  54. Aruoma OI, Hayashi Y, Marotta F, Mantello P, Rachmilewitz E, Montagnier L. 2010. Applications and bioefficacy of the functional food supplement fermented papaya preparation. Toxicology 278: 6-16. https://doi.org/10.1016/j.tox.2010.09.006
  55. Zhang J, Mori A, Chen Q, Zhao B. 2006. Fermented papaya preparation attenuates $\beta$-amyloid precursor protein: $\beta$-amyloid-mediated copper neurotoxicity in $\beta$-amyloid precursor protein and $\beta$-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Neuroscience 143: 63-72. https://doi.org/10.1016/j.neuroscience.2006.07.023
  56. Imao K, Kameyama T, Ukai M. 2001. PS-501, fermented papaya preparation, improves scopolamine-induced amnesia in mice. Res Comm Pharm Toxicol 6: 197-204.
  57. Barbagallo M, Marotta F, Dominguez LJ. 2015. Oxidative stress in patients with Alzheimer's disease: effect of extracts of fermented papaya powder. Mediators Inflamm 2015: 624801.
  58. Barbagallo M, Belvedere M, Di Prima A, Miraglia S, Dominguez LJ. 2013. Effetto degli estratti di papaya fermentata sullo stress ossidativo in pazienti con Malattia di Alzheimer. G Gerontol 61: 199-204.
  59. Marzulli G, Magrone T, Kawaguchi K, Kumazawa Y, Jirillo E. 2012. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr Pharm Des 18: 43-50. https://doi.org/10.2174/138161212798919011
  60. Lee YC. 1991. Kimchi: the famous fermented vegetable product in Korea. Food Rev Int 7: 399-415. https://doi.org/10.1080/87559129109540920
  61. Kwak SH, Cho YM, Noh GM, Om AS. 2014. Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev 19: 253-258. https://doi.org/10.15430/JCP.2014.19.4.253
  62. Choi IH, Noh JS, Han JS, Kim HJ, Han ES, Song YO. 2013. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: randomized clinical trial. J Med Food 16: 223-229. https://doi.org/10.1089/jmf.2012.2563
  63. Choi WY, Park KY. 1999. Anticancer effects of organic Chinese cabbage kimchi. J Food Sci Nutr 4: 113-116.
  64. Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. 2012. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol 113: 1498-1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x
  65. Choi HS, Kim MK, Park HS, Yun SE, Mun SP, Kim JS, Sapkota K, Kim S, Kim TY, Kim SJ. 2007. Biological detoxification of lacquer tree (Rhus verniciflua Stokes) stem bark by mushroom species. Food Sci Biotechnol 16: 935-942.
  66. Byun JS, Han YH, Hong SJ, Hwang SM, Kwon YS, Lee HJ, Kim SS, Kim MJ, Chun W. 2010. Bark constituents from mushroom-detoxified Rhus verniciflua suppress kainic acid-induced neuronal cell death in mouse hippocampus. Korean J Physiol Pharmacol 14: 279-283. https://doi.org/10.4196/kjpp.2010.14.5.279
  67. Ng TP, Feng L, Niti M, Kua EH, Yap KB. 2008. Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr 88: 224-231. https://doi.org/10.1093/ajcn/88.1.224
  68. Money NP. 2016. Are mushrooms medicinal?. Fungal Biol 120: 449-453. https://doi.org/10.1016/j.funbio.2016.01.006
  69. Choi YJ, Yang HS, Jo JH, Lee SC, Park TY, Choi BS, Seo KS, Huh CK. 2015. Anti-amnesic effect of fermented Ganoderma lucidum water extracts by lactic acid bacteria on scopolamine-induced memory impairment in rats. Prev Nutr Food Sci 20: 126-132. https://doi.org/10.3746/pnf.2015.20.2.126
  70. Lu MK, Cheng JJ, Lai WL, Lin YJ, Huang NK. 2008. Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem 56: 865-874. https://doi.org/10.1021/jf072828b
  71. Xiong J, Huang Y, Wu XY, Liu XH, Fan H, Wang W, Zhao Y, Yang GX, Zhang HY, Hu JF. 2016. Chemical constituents from the fermented mycelia of the medicinal fungus Xylaria nigripes. Helv Chim Acta 99: 83-89. https://doi.org/10.1002/hlca.201500231
  72. Kim HU, Ryu JY, Lee JO, Lee SY. 2015. A systems approach to traditional oriental medicine. Nat Biotechnol 33: 264-268. https://doi.org/10.1038/nbt.3167
  73. Wen YL, Yan LP, Chen CS. 2013. Effects of fermentation treatment on antioxidant and antimicrobial activities of four common Chinese herbal medicinal residues by Aspergillus oryzae. J Food Drug Anal 21: 219-226. https://doi.org/10.1016/j.jfda.2013.05.013
  74. Weon JB, Ma JY, Yang HJ, Ma CJ. 2011. Neuroprotective activity of fermented Oyaksungisan. Korean J Pharmacogn 42: 22-26.
  75. Ma JY, Ma CJ, Yang HJ, Ma CJ. 2011. Quantitative analysis of compounds in fermented Insampaedok-san and their neuroprotective activity in HT22 cells. Nat Prod Sci 17: 58-63.
  76. Lee MR, Yun BS, Oh CJ, Kim BC, Oh HI, Sung CK. 2011. Characterization of Korean traditional medicine Chongmyungtang for cognitive function related to anti-cholinesterases and antioxidant activity. Food Sci Biotechnol 20: 1331. https://doi.org/10.1007/s10068-011-0183-6
  77. Nam JI, Park YW, Jeon H. 2010. Memory enhancing and antioxidant properties of fermented Chongmyung-tang. Nat Prod Sci 16: 93-98.
  78. Weon JB, Lee B, Yun BR, Lee J, Ma JY, Ma CJ. 2014. Neuroprotective and cognitive enhancing activity of the fermented Bozhougyiqi-Tang. Pharmacogn Mag 10: 249-255.
  79. Weon JB, Lee J, Eom MR, Jung YS, Ma CJ. 2016. Cognitive enhancing effect of the fermented Gumiganghwal-tang on scopolamine-induced memory impairment in mice. Nutr Neurosci 19: 125-130. https://doi.org/10.1179/1476830514Y.0000000152
  80. Yun BR, Weon JB, Lee J, Eom MR, Ma CJ. 2014. Neuroprotective effect of the fermented Gumiganghwal-tang. J Biosci Bioeng 118: 235-238. https://doi.org/10.1016/j.jbiosc.2014.01.004
  81. Yang HJ, Weon JB, Lee B, Ma CJ. 2011. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn Mag 7: 207-212. https://doi.org/10.4103/0973-1296.84234
  82. Park HR, Lee H, Park H, Cho WK, Ma JY. 2016. Fermented Sipjeondaebo-tang alleviates memory deficits and loss of hippocampal neurogenesis in scopolamine-induced amnesia in mice. Sci Rep 6: 22405. https://doi.org/10.1038/srep22405
  83. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881-884. https://doi.org/10.1126/science.291.5505.881
  84. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156: 84-96. https://doi.org/10.1016/j.cell.2013.12.016
  85. Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Dionisi F, Cavin C, Williamson G, Steiling H. 2010. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res 54: 760-766.
  86. Park EK, Shin J, Bae EA, Lee YC, Kim DH. 2006. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol Pharm Bull 29: 2432-2435. https://doi.org/10.1248/bpb.29.2432
  87. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558: 263-275. https://doi.org/10.1113/jphysiol.2004.063388
  88. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. 2007. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522-1528. https://doi.org/10.1136/gut.2006.117176
  89. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V. 2012. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37: 1885-1895. https://doi.org/10.1016/j.psyneuen.2012.03.024
  90. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM. 2010. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139: 2102-2112.e1. https://doi.org/10.1053/j.gastro.2010.06.063
  91. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. 2011. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599-609.e3. https://doi.org/10.1053/j.gastro.2011.04.052
  92. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108: 16050-16055. https://doi.org/10.1073/pnas.1102999108
  93. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. 2012. $\gamma$-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113: 411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x
  94. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. 2013. The microbiomegut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18: 666-673. https://doi.org/10.1038/mp.2012.77
  95. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. 2008. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43: 164-174. https://doi.org/10.1016/j.jpsychires.2008.03.009

Cited by

  1. Nutritional Psychiatry: Where to Next? vol.17, 2017, https://doi.org/10.1016/j.ebiom.2017.02.020
  2. Absence of subchronic oral toxicity and genotoxicity of rice koji with Aspergillus terreus vol.89, 2017, https://doi.org/10.1016/j.yrtph.2017.08.004
  3. Health Benefits of Fermented Foods 2019, https://doi.org/10.1080/10408398.2017.1383355
  4. Impact of Fermented Foods on Human Cognitive Function—A Review of Outcome of Clinical Trials vol.86, pp.2, 2018, https://doi.org/10.3390/scipharm86020022
  5. Gut microbiota’s effect on mental health: The gut-brain axis vol.7, pp.4, 2017, https://doi.org/10.4081/cp.2017.987
  6. Antiplatelet Effects of Garlic and Chitosan: a Comparative Study between Fermented and Non-Fermented Preparations vol.24, pp.3, 2016, https://doi.org/10.15616/bsl.2018.24.3.280
  7. Anticardiovascular Diseases Effects of Fermented Garlic and Fermented Chitosan vol.6, pp.4, 2016, https://doi.org/10.17703//ijact2018.6.4.109
  8. Fermented Garlic Ameliorates Hypercholesterolemia and Inhibits Platelet Activation vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/3030967
  9. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review vol.11, pp.5, 2016, https://doi.org/10.3390/nu11051189
  10. Relative Importance of Selection Attributes in Garlic-Based Health Functional Food Using Conjoint Analysis vol.29, pp.4, 2016, https://doi.org/10.17495/easdl.2019.8.29.4.336
  11. The Gut Microbiome and Mental Health: What Should We Tell Our Patients?: Le microbiote Intestinal et la Santé Mentale : que Devrions-Nous dire à nos Patients? vol.64, pp.11, 2016, https://doi.org/10.1177/0706743719874168
  12. The Inhibiton Effects of Hypercholesterolemia and Platelet in Fermented and Non-Fermented Preparation of Garlic vol.11, pp.4, 2016, https://doi.org/10.7236/ijibc.2019.11.4.1
  13. Tempeh Consumption and Cognitive Improvement in Mild Cognitive Impairment vol.49, pp.5, 2016, https://doi.org/10.1159/000510563
  14. Intestinal microbiota of white shrimp, Litopenaeus vannamei, fed diets containing Bacillus subtilis E20‐fermented soybean meal (FSBM) or an antimicrobial peptide derived from B. subtilis E20 vol.51, pp.1, 2020, https://doi.org/10.1111/are.14345
  15. Nutritional, Microbial, and Allergenic Changes during the Fermentation of Cashew ‘Cheese’ Product Using a Quinoa-Based Rejuvelac Starter Culture vol.12, pp.3, 2020, https://doi.org/10.3390/nu12030648
  16. 발효마늘 추출물의 항혈전 및 심혈관개선 효과 vol.6, pp.2, 2016, https://doi.org/10.17703/jcct.2020.6.2.567
  17. Structural Elucidation of Irish Ale Bioactive Polar Lipids with Antithrombotic Properties vol.10, pp.7, 2016, https://doi.org/10.3390/biom10071075
  18. Processing, Characteristics and Composition of Umqombothi (a South African Traditional Beer) vol.8, pp.11, 2020, https://doi.org/10.3390/pr8111451
  19. Development of pulse-based probiotics by fermentation using Fiti sachets for the developing world vol.50, pp.6, 2020, https://doi.org/10.1108/nfs-08-2019-0272
  20. Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041035
  21. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030636
  22. Effects of a Rice-Based Diet in Korean Adolescents Who Habitually Skip Breakfast: A Randomized, Parallel Group Clinical Trial vol.13, pp.3, 2016, https://doi.org/10.3390/nu13030853
  23. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods vol.13, pp.5, 2021, https://doi.org/10.3390/nu13051516
  24. The Role of The Gut Microbiome in Parkinson’s Disease vol.34, pp.4, 2016, https://doi.org/10.1177/08919887211018268
  25. Impact of Gut Microbiome Lactobacillus spp. in Brain Function and its Medicament towards Alzheimer’s Disease Pathogenesis vol.15, pp.3, 2016, https://doi.org/10.22207/jpam.15.3.02
  26. Anorexia Nervosa-What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature vol.13, pp.11, 2016, https://doi.org/10.3390/nu13113819
  27. Evaluating the Potential of the Defatted By-Product of Aurantiochytrium sp. Industrial Cultivation as a Functional Food vol.10, pp.12, 2021, https://doi.org/10.3390/foods10123058