DOI QR코드

DOI QR Code

Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

  • Lee, Mak-Soon (Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University) ;
  • Shin, Yoonjin (Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University) ;
  • Moon, Sohee (Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University) ;
  • Kim, Seunghae (Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University) ;
  • Kim, Yangha (Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University)
  • Received : 2016.07.04
  • Accepted : 2016.08.21
  • Published : 2016.12.31

Abstract

Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-$1{\alpha}$) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-$1{\alpha}$ promoter activity in $C_2C_{12}$ muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-$1{\alpha}$, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-$1{\alpha}$ promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-$1{\alpha}$, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-$1{\alpha}$ promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-$1{\alpha}$ gene expression in $C_2C_{12}$ muscle cells.

Keywords

References

  1. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. 2002. Transcriptional co-activator PGC-$1{\alpha}$ drives the formation of slow-twitch muscle fibres. Nature 418: 797-801. https://doi.org/10.1038/nature00904
  2. Scarpulla RC. 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88: 611-638. https://doi.org/10.1152/physrev.00025.2007
  3. Handschin C, Spiegelman BM. 2008. Hypothesis article the role of exercise and $PGC1{\alpha}$ in inflammation and chronic disease. Nature 454: 463-469. https://doi.org/10.1038/nature07206
  4. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124. https://doi.org/10.1016/S0092-8674(00)80611-X
  5. Virbasius JV, Scarpulla RC. 1994. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91: 1309-1313. https://doi.org/10.1073/pnas.91.4.1309
  6. Parisi MA, Clayton DA. 1991. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965-969. https://doi.org/10.1126/science.2035027
  7. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD. 2000. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71: 179S-188S. https://doi.org/10.1093/ajcn/71.1.179S
  8. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Perusse L, Vohl MC. 2014. SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation. Lipids Health Dis 13: 152. https://doi.org/10.1186/1476-511X-13-152
  9. Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood WR, Kypson AP, Rodriguez E. 2014. Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via $PPAR{\gamma}$ activation?. Antioxid Redox Signal 21: 1156-1163. https://doi.org/10.1089/ars.2014.5888
  10. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, Bandarra NM, Schaafsma G, Martinez JA. 2007. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes 31: 1560-1566. https://doi.org/10.1038/sj.ijo.0803643
  11. Ramel A, Parra D, Martinez JA, Kiely M, Thorsdottir I. 2009. Effects of seafood consumption and weight loss on fasting leptin and ghrelin concentrations in overweight and obese European young adults. Eur J Nutr 48: 107-114. https://doi.org/10.1007/s00394-008-0769-9
  12. Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal N, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Kopecky J. 2005. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce $\beta$-oxidation in white fat. Diabetologia 48: 2365-2375. https://doi.org/10.1007/s00125-005-1944-7
  13. Jeng JY, Lee WH, Tsai YH, Chen CY, Chao SY, Hsieh RH. 2009. Functional modulation of mitochondria by eicosapentaenoic acid provides protection against ceramide toxicity to C6 glioma cells. J Agric Food Chem 57: 11455-11462. https://doi.org/10.1021/jf902021h
  14. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386.
  15. Freyssenet D, Berthon P, Denis C. 1996. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 104: 129-141. https://doi.org/10.1076/apab.104.2.129.12878
  16. Hood DA, Takahashi M, Connor MK, Freyssenet D. 2000. Assembly of the cellular powerhouse: current issues in muscle mitochondrial biogenesis. Exerc Sport Sci Rev 28: 68-73.
  17. Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, Ungvari Z. 2009. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297: H13-H20. https://doi.org/10.1152/ajpheart.00368.2009
  18. Rehman H, Krishnasamy Y, Haque K, Thurman RG, Lemasters JJ, Schnellmann RG, Zhong Z. 2013. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin A treatment in rats. PLoS One 8: e65029. https://doi.org/10.1371/journal.pone.0065029
  19. Ray Hamidie RD, Yamada T, Ishizawa R, Saito Y, Masuda K. 2015. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism 64: 1334-1347. https://doi.org/10.1016/j.metabol.2015.07.010
  20. Elvevoll EO, Eilertsen KE, Brox J, Dragnes BT, Falkenberg P, Olsen JO, Kirkhus B, Lamglait A, Osterud B. 2008. Seafood diets: hypolipidemic and antiatherogenic effects of taurine and n-3 fatty acids. Atherosclerosis 200: 396-402. https://doi.org/10.1016/j.atherosclerosis.2007.12.021
  21. Lombardo YB, Hein G, Chicco A. 2007. Metabolic syndrome: effects of n-3 pufas on a model of dyslipidemia, insulin resistance and adiposity. Lipids 42: 427-437. https://doi.org/10.1007/s11745-007-3039-3
  22. Madsen L, Rustan AC, Vaagenes H, Berge K, Dyroy E, Berge RK. 1999. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 34: 951-963. https://doi.org/10.1007/s11745-999-0445-x
  23. Lee MS, Kim IH, Kim Y. 2013. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in $C_2C_{12}$ muscle cells. Nutrients 5: 1660-1671. https://doi.org/10.3390/nu5051660
  24. Zhao M, Chen X. 2014. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem Biophys Res Commun 450: 1446-1451. https://doi.org/10.1016/j.bbrc.2014.07.010
  25. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. 2000. Peroxisome proliferator-activated receptor $\gamma$ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847-856. https://doi.org/10.1172/JCI10268
  26. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-$1{\alpha}$. EMBO J 26: 1913-1923. https://doi.org/10.1038/sj.emboj.7601633
  27. Kim Y, Park Y. 2015. Conjugated linoleic acid (CLA) stimulates mitochondrial biogenesis signaling by the upregulation of $PPAR{\gamma}$ coactivator $1{\alpha}$ (PGC-$1{\alpha}$) in $C_2C_{12}$ cells. Lipids 50: 329-338. https://doi.org/10.1007/s11745-015-4000-5
  28. Cavaliere G, Trinchese G, Bergamo P, De Filippo C, Mattace Raso G, Gifuni G, Putti R, Moni BH, Canani RB, Meli R, Mollica MP. 2016. Polyunsaturated fatty acids attenuate diet induced obesity and insulin resistance, modulating mitochondrial respiratory uncoupling in rat skeletal muscle. PLoS One 11: e0149033. https://doi.org/10.1371/journal.pone.0149033
  29. Siculella L, Sabetta S, Damiano F, Giudetti AM, Gnoni GV. 2004. Different dietary fatty acids have dissimilar effects on activity and gene expression of mitochondrial tricarboxylate carrier in rat liver. FEBS Lett 578: 280-284. https://doi.org/10.1016/j.febslet.2004.11.014

Cited by

  1. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration vol.10, pp.3, 2018, https://doi.org/10.3390/nu10030309
  2. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation vol.5, pp.2296-861X, 2018, https://doi.org/10.3389/fnut.2018.00015
  3. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061483
  4. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms vol.7, pp.1, 2019, https://doi.org/10.14814/phy2.13966
  5. Molecular Characterization of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α (PGC1α) and Its Role in Mitochondrial Biogenesis in Blunt Snout Bream (Megalobrama amblycephala) vol.9, pp.1664-042X, 2019, https://doi.org/10.3389/fphys.2018.01957
  6. DHA Protects Against Hepatic Steatosis by Activating Sirt1 in a High Fat Diet-Induced Nonalcoholic Fatty Liver Disease Mouse Model vol.13, pp.None, 2016, https://doi.org/10.2147/dmso.s232279
  7. Antioxidant Activity of Docosahexaenoic Acid (DHA) and Its Regulatory Roles in Mitochondria vol.69, pp.5, 2016, https://doi.org/10.1021/acs.jafc.0c07751
  8. Omega-3 Fatty Acids Upregulate SIRT1/3, Activate PGC-1α via Deacetylation, and Induce Nrf1 Production in 5/6 Nephrectomy Rat Model vol.19, pp.4, 2021, https://doi.org/10.3390/md19040182
  9. Exploratory Data Analysis of Cell and Mitochondrial High-Fat, High-Sugar Toxicity on Human HepG2 Cells vol.13, pp.5, 2016, https://doi.org/10.3390/nu13051723
  10. Down syndrome is an oxidative phosphorylation disorder vol.41, pp.None, 2016, https://doi.org/10.1016/j.redox.2021.101871
  11. Effect of docosahexaenoic acid on in vitro growth of bovine oocytes vol.20, pp.4, 2016, https://doi.org/10.1002/rmb2.12403
  12. Eicosapentaenoic acid (EPA) exhibits antioxidant activity via mitochondrial modulation vol.373, pp.no.pa, 2016, https://doi.org/10.1016/j.foodchem.2021.131389