DOI QR코드

DOI QR Code

추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints

  • Park, Bum Hwan (Department of Railroad Management and Logistics, Korea National University of Transportation) ;
  • Kim, Young-Hoon (Logistics System Research Team, Korea Railroad Research Institute)
  • 투고 : 2016.12.06
  • 심사 : 2016.12.21
  • 발행 : 2016.12.31

초록

최근 철도 화물 수송은 컨테이너 전세 열차뿐만 아니라 시멘트, 철강 등 일반 화물의 전용열차 수가 증가하고 있고, 이에 따라 영차 수송 계획은 점차 단순해지고 있다. 반면에 공화차 수송의 경우, 수송 계획 최적화 시스템의 부재로, 사령의 경험에 의해 공화차 배분이 이루어지고 있으며, 이의 효율성 여부는 검증된 바 없고, 공화차 배분을 위한 별도의 의사결정지원시스템의 필요성은 여전히 존재한다. 본 연구에서는 연구 문헌상의 공화차 배분 최적화 모형뿐만 아니라 2010년 전후로 개발 되었다가 최근 사용이 중단된 화물수송최적화 시스템(KTOCS)상의 공화차 배분 최적화 모형을 비판적으로 살펴본 후, 수송 문제를 활용한 새로운 공화차 배분 최적화 모형 및 해법을 제시한다. 이 최적화 모형은 기존 모형과 달리, 추가 제약이 있는 수송문제에 포함되는 아크를 동적으로 생성해내는 열생성 기법에 기초하고 있다. 이를 이용한 우리나라 전체 철도 네트워크에 대한 시뮬레이션 결과, 실적 상에 나타난 공화차 km를 상당히 낮출 수 있는 것을 확인할 수 있었다.

Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

키워드

참고문헌

  1. Korea Railroad (2009) Development of Optimization System for Rail Freight Transportation. Interim report, Korea Railroad.
  2. R. K. Ahuja, K.C. Jha, and Jian Liu (2007) Solving real-life railroad blocking problems, Interfaces, 37(5), pp.404-419 https://doi.org/10.1287/inte.1070.0295
  3. A. Fukasawa, M. Aragao, O. Porto and E. Uchoa (2002) Solving the Freight Car Flow Problem to Optimality, Electronic Notes in Theoretical Science, 66(6), pp. 42-52. https://doi.org/10.1016/S1571-0661(04)80528-0
  4. M. Joborn, T. G. Crainic, M. Gendreau, K. Holmberg and J. T. Lundgren (2004) Economies of Scale in Empty Freight Car Distribution in Scheduled Railways, Transportation Science, 38(2), pp. 121-134. https://doi.org/10.1287/trsc.1030.0061
  5. A. K. Narisetty, J. P. Richard, D. Ramcharan, D.M. Murphy, G. Minks and J. Fuller (2008) An Optimization Model for Empty Freight Car Assignment at Union Pacific Railroad. Interfaces, 38(2), pp. 89-102. https://doi.org/10.1287/inte.1070.0330
  6. B. Lee, D. Won, C. Ahn, B. Park (2016) Status of empty freight car operation, Proceedings of the Korean Railway Association Fall Conference, Jeju, pp. 85-93
  7. O. Ha, K. Kim, H. Kong, S. Choi (2013) Calculation of appropriate return days for securing the objectivity of judgment of wagon quantity required, Proceedings of the Korean Railway Association Fall Conference, Daegu, pp. 108-115.