DOI QR코드

DOI QR Code

Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection

침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교

  • Yu, Jaecheul (Department of Environmental Engineering, Pusan National University) ;
  • Park, Younghyun (Department of Environmental Engineering, Pusan National University) ;
  • Lee, Taeho (Department of Environmental Engineering, Pusan National University)
  • Received : 2016.09.27
  • Accepted : 2016.12.02
  • Published : 2016.12.30

Abstract

Microbial fuel cell (MFC) can produce electricity from oxidation-reduction of organic and inorganic matters by electrochemically active bacteria as catalyst. Stacked MFCs have been investigated for overcoming low electricity generation of single MFC. In this study, two-typed stacked-MFCs (submerged-flat and stand-falt) were operated according to electrode connection for optimal stacked technology of MFC. In case of submerged-flat MFC with all separator electrode assembly (SEA) sharing anode chamber, MFC with mixed-connection showed more voltage loss than MFC with single-connection method. And MFC stacked in parallel showed better voltage production than MFC stacked in series. In case of stand-flat MFC, voltage loss was bigger when SEAs sharing anodic chamber only were connected in series. Voltage loss was decreased when SEAs parallel connected SEAs sharing anodic chamber were connected in series.

미생물연료전지(Microbial Fuel Cell; MFC)는 전기화학활성미생물로 불리는 미생물을 촉매로 이용하여, 유/무기물의 산화환원 반응을 통해서 전기에너지를 생산할 수 있는 장치이다. 단일 MFC에서 발생하는 낮은 전기생산량을 극복하기 위해, 다수의 형태의 MFC를 직렬 또는 병렬로 연결하는 방법이 연구되고 있다. 본 연구에서는 6개의 단위 막전극접합체(Separator Electrode Assembly; SEA)로 구성된 침지평판형과 직립평판형 MFC 스택을 운전하였다. 단위 MFC와 MFC 스택의 전기발생량을 비교하였으며, 이를 통해서 MFC의 최적 스택기술을 확보하기 위한 기초자료로 활용하고자 하였다. 모든 SEA가 산화전극부를 공유하고 있는 침지평판형 MFC의 경우, 직렬과 병렬을 함께 사용할 경우, 단일 연결 방식을 사용하는 것보다 전압의 손실이 더 크게 나타났으며, 단일 연결방법 중 병렬연결 하는 것이 손실을 최소화 할 수 있는 것으로 나타났다. 직립평판형 MFC의 경우, 산화전극부를 공유하고 있는 SEA만 직렬 연결할 경우에는 전압의 손실이 크게 나타났으며, 산화전극부를 공유하고 있는 SEA간에 병렬 연결 후, 병렬 연결된 SEA를 직렬연결하는 방식이 전압의 손실을 최소화 할 수 있을 것으로 나타났다.

Keywords

References

  1. Kim, B. H., Chang, I. S., and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Applied Microbiology and Biotechnology, Vol 76 No 3, 2007, pp 485-494. https://doi.org/10.1007/s00253-007-1027-4
  2. Logan B.E. Mamelers B., Rozendal, R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K., "Microbial fuel cells: Methodology and Technology," Environmental Science and Technology, Vol 40, No 17, 2006, pp 5181-5192. https://doi.org/10.1021/es0605016
  3. Logan B.E., "Exoelectrogenic bacteria that power microbial fuel cell," Nature Reviews Microbiology, Vol 7, No 5, 2009, pp 375-381. https://doi.org/10.1038/nrmicro2113
  4. Anderson S.J., Pikaar I., Freguia S., Lovell B.C., Rabaey K., Rozendal R.A., "Dynamically adaptive control system for bioanodes in serially stacked bioelectrochemical systems" Environmental Science and Technology, Vol 47, No 10, 2013, pp 5488-5494. https://doi.org/10.1021/es400239k
  5. Ledezma P., Greenman J., Ieropoulos I., "MFC-cascade stacks maximise COD reduction and avoid reversal under adverse conditions," Bioresource Technology, Vol 134, 2013, pp 158-165. https://doi.org/10.1016/j.biortech.2013.01.119
  6. Yu J., Seon J., Park Y., Cho S., Lee T., "Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment", Bioresource Technology, Vol 117, 2012, pp 172-179. https://doi.org/10.1016/j.biortech.2012.04.078
  7. Shimoyama T., Komukai S., Yamazawa A., Ueno Y., Logan B.E., Watanabe K., "Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell," Applied Microbiology and Biotechnology, Vol 80, No 2, 2008. pp 325-330. https://doi.org/10.1007/s00253-008-1516-0
  8. Wang B., Han J.I., "A single chamber stackable microbial fuel cell with air cathode," Biotechnology Letters Vol 31, No 3, 2009, pp 387-393. https://doi.org/10.1007/s10529-008-9877-0
  9. Choi J., Ahn Y., "Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater," Journal of Environmental Management, Vol 130, 2013, pp 146-152. https://doi.org/10.1016/j.jenvman.2013.08.065
  10. Zhuang L., Zheng Y., Zhou S., Yuan Y., Yuan H., Chen Y., "Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment," Bioresource Tehcnology, Vol 106, 2012, pp 82-88. https://doi.org/10.1016/j.biortech.2011.11.019
  11. Cheng, S., Liu, H., Logan, B.E., "Increased performance of singlechamber microbial fuel cells using an improved cathode structure", Electrochemistry Communications. Vol 8, No 3, 2006, pp 489-494. https://doi.org/10.1016/j.elecom.2006.01.010
  12. Kim D., An J., Kim B., Jang J.K., Kim B.H., Chang I.S., "Scalingup microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte", ChemSusChem, Vol 5, No 6, 2012, pp 1086-1091. https://doi.org/10.1002/cssc.201100678