DOI QR코드

DOI QR Code

Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper)

고출력 광섬유 레이저 기술의 현황 및 전망

  • Kwon, Youngchul (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Park, Kyoungyoon (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Dongyeul (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Chang, Hanbyul (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Seungjong (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Vazquez-Zuniga, Luis Alonso (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Yong Soo (Laser Team, Doosan DST) ;
  • Kim, Dong Hwan (Laser Team, Doosan DST) ;
  • Kim, Hyun Tae (Laser Team, Doosan DST) ;
  • Jeong, Yoonchan (Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2015.12.14
  • Accepted : 2016.02.03
  • Published : 2016.02.25

Abstract

Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.

최근 20 여년간의 괄목할만한 발전을 통해 단일 광섬유 레이저의 출력은 이미 kW 수준을 상회하고 있으며, 기존의 벌크 방식 레이저의 대체 기술로서 여전히 학계 및 산업계의 뜨거운 관심을 받고 있다. 본 논문은 이와 같은 광섬유 레이저의 괄목할만한 성장을 가능하게 한, 이터븀(Ytterbium) 혼입 이득 광섬유 사용 방식, 레이저 다이오드 펌프와 이중 클래딩 광섬유 구조를 통한 광학적 펌프 방식, 더 나아가서 양자결함을 최소화 하는 종렬 펌핑 방식 등 그 주요 요소 기술들을 개괄하고, 그 극한적 고출력화에 따른 발진 효율 및 특성 저하, 시스템 열화 및 불안정성 증대 등과 같은 고출력 광섬유 레이저 기술 자체가 직면하고 있는 다양한 기술적 문제점 및 그 완화 방안을 논의한다. 여기에서는 광섬유 레이저의 고출력화와 더불어 야기되는 다양한 형태의 광섬유내 비선형 현상, 광섬유 손상 및 모드 불안정 현상에 대한 논의를 포함한다. 이와 더불어, 전술한 다양한 출력 제한 현상을 극복함과 동시에 광섬유 레이저의 출력을 현격한 수준으로 더욱 증가시키기 위한 대체 방안으로 최근 주목을 많이 받고 있는 다중 빔 결합 기술에 대해 개괄적으로 논의한다. 특히, 분광형 다중 빔 결합 기술의 개념적 시스템 구성 요소 및 각 부문별 요구 기술에 대해 보다 심화된 논점을 둔다. 최종적으로 현 수준을 뛰어 넘는 광섬유 레이저의 출력 증대와 본 기술의 지속적 발전을 위한 앞으로의 발전 방향을 논의한다.

Keywords

References

  1. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. Park, and J.-M. P. Delavaux, "Stable single-mode Erbium fiber-grating laser for digital communication," IEEE J. Lightwave Technol. 11, 2021-2025 (1993). https://doi.org/10.1109/50.257965
  2. L. G. Luo, P. L. Chu, and H. F. Liu, "1-GHz optical communication system using chaos in Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 12, 269-271 (2000). https://doi.org/10.1109/68.826910
  3. Q. Peng, A. Juzeniene, J. Chen, L. O Svaasand, T. Warloe, K.-E. Giercksky, and J. Moan, "Lasers in medicine," Rep. Prog. Phys. 71, 1-28 (2008).
  4. N. M. Fried and K. E. Murray, "High-power Thulium fiber laser ablation of urinary tissues at 1.94 ${\mu}m$," J. Endourol. 19, 25-31 (2005). https://doi.org/10.1089/end.2005.19.25
  5. S. Son, H. Park, and K. H. Lee, "Automated laser scanning system for reverse engineering and inspection," Int. J. Mach. Tools Manuf. 42, 889-897 (2002). https://doi.org/10.1016/S0890-6955(02)00030-5
  6. T. Pfister, L. Buttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006). https://doi.org/10.1088/0957-0233/17/7/007
  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). https://doi.org/10.1063/1.370197
  8. A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics-a review" J. Eur. Ceram. Soc. 29, 969-993 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.010
  9. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  10. J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). https://doi.org/10.1364/JOSAB.24.001661
  11. C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013). https://doi.org/10.1038/nphoton.2013.273
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). https://doi.org/10.1109/3.594865
  13. M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Sel. Top. Quantum Electron. 15, 191-206 (2009). https://doi.org/10.1109/JSTQE.2008.2010246
  14. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  15. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-471 (2004). https://doi.org/10.1049/el:20040298
  16. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode Ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009). https://doi.org/10.3807/JOSK.2009.13.4.416
  17. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency Ytterbium-doped fiber master-oscillaotr power-amplifier sources up to 500 W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007). https://doi.org/10.1109/JSTQE.2007.896639
  18. E. Stiles, "New developments in IPG fiber laser technology," in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  19. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Opt. Fiber Technol. 20, 575-592 (2014). https://doi.org/10.1016/j.yofte.2014.07.004
  20. L. A. Vazquez-Zuniga and Y. Jeong, "Power-scalable, subnanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Kor. 17, 177-181 (2013). https://doi.org/10.3807/JOSK.2013.17.2.177
  21. L. A. Vazquez-Zuniga and Y. Jeong, "Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror," J. Opt. Soc. Kor. 17, 117-129 (2013). https://doi.org/10.3807/JOSK.2013.17.2.117
  22. L. A. Vazquez-Zuniga, H. Kim, Y. Kwon, and Y. Jeong, "Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber," Opt. Express 21, 7712-7725 (2013). https://doi.org/10.1364/OE.21.007712
  23. S. Lee, L. A. Vazquez-Zuniga, D. Lee, H. Kim, J. K. Sahu, and Y. Jeong, "Comparative experimental analysis of thermal characteristics of ytterbium-doped phosphosilicate and aluminosilicate fibers," J. Opt. Soc. Kor. 17, 182-187 (2013). https://doi.org/10.3807/JOSK.2013.17.2.182
  24. T. Yao, J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped Aluminosilicate fibers," IEEE J. Lightwave Technol. 32, 429-434 (2014). https://doi.org/10.1109/JLT.2013.2290284
  25. J. Limpert, F. Roser, T. Schreiber, and A, Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). https://doi.org/10.1109/JSTQE.2006.872729
  26. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). https://doi.org/10.1364/OE.16.013240
  27. K. Park and Y. Jeong, "A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers," Opt. Express 22, 7932-7946 (2014). https://doi.org/10.1364/OE.22.007932
  28. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
  29. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007). https://doi.org/10.1364/OE.15.000977
  30. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, "170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Express 21, 5456-5462 (2013). https://doi.org/10.1364/OE.21.005456
  31. N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11, 1518-1522 (1993). https://doi.org/10.1109/50.249889
  32. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," IEEE J. Lightwave Technol. 22, 631-639 (2004). https://doi.org/10.1109/JLT.2003.822007
  33. P. D. Dragic, "Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers," Electron. Lett. 48, 1492-1493 (2012). https://doi.org/10.1049/el.2012.3175
  34. L. Dong, "Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs," IEEE J. Lightwave Technol. 28, 3156-3161 (2010).
  35. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tunnermann, "Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers," Opt. Lett. 35, 2982-2984 (2010). https://doi.org/10.1364/OL.35.002982
  36. J. Kim, P. Dupriez, C. Codemard, J.Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). https://doi.org/10.1364/OE.14.005103
  37. X. Ma, I.-N. Hu, and A. Galvanauskas, "Propagation-length independent SRS threshold in chirally-coupled-core fibers," Opt. Express 19, 22575-22581 (2011). https://doi.org/10.1364/OE.19.022575
  38. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by selffocusing," Opt. Lett. 31, 3423-3425 (2006). https://doi.org/10.1364/OL.31.003423
  39. G. Fibich and A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett. 25, 335-337 (2000). https://doi.org/10.1364/OL.25.000335
  40. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). https://doi.org/10.1364/OE.19.010180
  41. C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "The impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). https://doi.org/10.1364/OE.19.003258
  42. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Physical origin of mode instabilities in high-power fiber laser systems," Opt. Express 20, 12912-12925 (2012). https://doi.org/10.1364/OE.20.012912
  43. M. Karow, H. Tunnermann, J. Neumann, D. Kracht, and P. Wessels, "Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power," Opt. Lett. 37, 4242-4244 (2012). https://doi.org/10.1364/OL.37.004242
  44. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). https://doi.org/10.1364/OE.19.013218
  45. A. V. Smith and J. J. Smith, "Increasing mode instability thresholds of fiber amplifers by gain saturation," Opt. Express 21, 15168-15182 (2013). https://doi.org/10.1364/OE.21.015168
  46. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser systems," Opt. Express 21, 19375-19386 (2013). https://doi.org/10.1364/OE.21.019375
  47. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigation of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). https://doi.org/10.1364/OE.21.016111
  48. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Thermally induced mode coupling in rare-earth doped fiber amplifiers" Opt. Lett. 37, 2382-2384 (2012). https://doi.org/10.1364/OL.37.002382
  49. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
  50. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007). https://doi.org/10.1364/JOSAB.24.001707
  51. W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, "Coherent beam combining with multilevel optical phase-locked loops," J. Opt. Soc. Am. B 24, 2930-2939 (2007). https://doi.org/10.1364/JOSAB.24.002930
  52. S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, C.-C. Shih, D. M. Shimabukuro, M. P. Wacks, M. E. Weber, and G. D. Goodno, "Scalable coherent combining of kilowatt fiber amplifers into a 2.4-kW beam," IEEE J. Sel. Top. Quantum Electron. 20, 0901008 (2014).
  53. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beamcombined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron. 13, 487-497 (2007). https://doi.org/10.1109/JSTQE.2007.896568
  54. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118-3120 (2011). https://doi.org/10.1364/OL.36.003118
  55. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). https://doi.org/10.1364/OE.17.001178
  56. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, "Ultimate efficiency of spectral beam combining by volume Bragg gratings," Appl. Opt. 52, 7233-7242 (2013). https://doi.org/10.1364/AO.52.007233
  57. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008). https://doi.org/10.1364/OL.33.000384
  58. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, USA, 2007).
  59. V. Khitrov, K. Farley, R. Leveille, J. Galipeau, I. Majid, S. Christensen, B. Samson, and K. Tankala, "kW level narrow linewidth Yb fiber amplifiers for beam combining" Proc. SPIE 7686, 76860A-1-76860A-8 (2010).
  60. S. Hadrich, T. Schreiber, T. Pertsch, J. Limpert, T, Peschel, R. Eberhardt, and A. Tunnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006). https://doi.org/10.1364/OE.14.006091
  61. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Kilowattclass single-frequency fiber sources," Proc. SPIE 5709, 133-141 (2005).
  62. http://www.laserfocusworld.com/articles/2015/03/lockheedmartin-s-30-kw-fiber-laser-weapon-disables-truck-from-a-mile-away.html
  63. http://www.qphotonics.com/Fiber-Coupled-Single-Mode-Laser-Diodes/
  64. J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optical parametric amplifiers," Opt. Express 18, 18138-18150 (2010). https://doi.org/10.1364/OE.18.018138
  65. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo- random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
  66. A. V. Harish and J. Nilsson, "Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering," Opt. Express 23, 6988-6999 (2015). https://doi.org/10.1364/OE.23.006988
  67. http://www.nufern.com/pam/optical_fibers/933/PLMA-YDF-25_400-VIII/
  68. P. P. Lu, A. L. Bullington, P. Beyersdorf, S. Traeger, and J. Mansell, R. Beausoleil, E. K. Gustafson, R. L. Byer, and M. M. Fejer, "Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam," J. Opt. Soc. Am. A 24, 659-668 (2007). https://doi.org/10.1364/JOSAA.24.000659
  69. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). https://doi.org/10.1103/PhysRevB.53.1749
  70. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tunnermann, "Spectral beam combination of fiber amplified ns-pulses by means of interference filters," Opt. Express 17, 22974-22982 (2009). https://doi.org/10.1364/OE.17.022974
  71. M. Fabert, A. D.-Berthelemot, V. Kermene, and A. Crunteanu, "Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirros," Opt. Express 20, 22895-22901 (2012). https://doi.org/10.1364/OE.20.022895