DOI QR코드

DOI QR Code

Light-Microscopy-Based Sparse Neural Circuit Reconstruction: Array Tomography and Other Methods

  • Rah, Jong-Cheol (Korea Brain Research Institute, Laboratory of Neurophysiology)
  • Received : 2016.12.21
  • Accepted : 2016.12.23
  • Published : 2016.12.30

Abstract

Efficient neural circuit reconstruction requires sufficient lateral and axial resolution to resolve individual synapses and map a large enough volume of brain tissue to reveal the molecular identity and origin of these synapses. Sparse circuit reconstruction using array tomography meets many of these requirements but also has some limitations. In this minireview, the advantages and disadvantages of applicable imaging techniques will be discussed.

Keywords

References

  1. Bloss E B, Cembrowski M S, Karsh B, Colonell J, Fetter R D, and Spruston N (2016) Structured dendritic inhibition supports branch- selective integration in CA1 pyramidal cells. Neuron 89, 1016-1030. https://doi.org/10.1016/j.neuron.2016.01.029
  2. Bock D D, Lee W C A, Kerlin A M, Andermann M L, Hood G, Wetzel A W, Yurgenson S, Soucy E R, Kim H S, and Reid R C (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177-182. https://doi.org/10.1038/nature09802
  3. Briggman K L, Helmstaedter M, and Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183-188. https://doi.org/10.1038/nature09818
  4. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, and Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat. Meth. 8, 1047-1049. https://doi.org/10.1038/nmeth.1744
  5. Chen F, Tillberg P W, and Boyden E S (2015) Optical imaging. Expansion microscopy. Science 347, 543-548. https://doi.org/10.1126/science.1260088
  6. Chen F, Wassie A T, Cote A J, Sinha A, Alon S, Asano S, Daugharthy E R, Chang J B, Marblestone A, Church G M, Raj A, and Boyden E S (2016). Nanoscale imaging of RNA with expansion microscopy. Nature Methods 13, 679-684. https://doi.org/10.1038/nmeth.3899
  7. DeFelipe J, Marco P, Busturia I, and Merchan-Perez A (1999) Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cerebral Cortex 9, 722-732. https://doi.org/10.1093/cercor/9.7.722
  8. Feinberg E H, VanHoven M K, Bendesky A, Wang G, Fetter R D, Shen K, and Bargmann C I (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363. https://doi.org/10.1016/j.neuron.2007.11.030
  9. Graf E R, Zhang X, Jin S X, Linhoff M W, and Craig A M (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013-1026. https://doi.org/10.1016/j.cell.2004.11.035
  10. Hayworth K J, Kasthuri N, Schalek R, and Lichtman J W (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12, 86-87. https://doi.org/10.1017/S1431927606066268
  11. Huang B, Wang W, Bates M, and Zhuang X (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810-813. https://doi.org/10.1126/science.1153529
  12. Kim J, Zhao T, Petralia R S, Yu Y, Peng H, Myers E, and Magee J C (2011) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Meth. 9, 96-102. https://doi.org/10.1038/nmeth.1784
  13. Lee W C A, Bonin V, Reed M, Graham B J, Hood G, Glattfelder K, and Reid R C (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370-374. https://doi.org/10.1038/nature17192
  14. Micheva K D, Busse B, Weiler N C, O'Rourke N, and Smith S J (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639-653. https://doi.org/10.1016/j.neuron.2010.09.024
  15. Micheva K D and Smith S J (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25-36. https://doi.org/10.1016/j.neuron.2007.06.014
  16. Mikula S, Binding J, and Denk W (2012) Staining and embedding the whole mouse brain for electron microscopy. Nat. Meth. 9, 1198- 1201. https://doi.org/10.1038/nmeth.2213
  17. Mishchenko Y (2010) On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers. PLoS One 5, e8853. https://doi.org/10.1371/journal.pone.0008853
  18. Morgan J L, Berger D R, Wetzel A W, and Lichtman J W (2016) The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192-206. https://doi.org/10.1016/j.cell.2016.02.033
  19. Nanguneri S, Flottmann B, Horstmann H, Heilemann M, and Kuner T (2012). Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7, e38098. https://doi.org/10.1371/journal.pone.0038098
  20. Punge A, Rizzoli S O, Jahn R, Wildanger J D, Meyer L, Schonle A, Kastrup L, and Hell S W (2008) 3D reconstruction of high-resolution STED microscope images. Microsc. Res. Tech. 71, 644-650. https://doi.org/10.1002/jemt.20602
  21. Rah J C (2013) Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Front. Neural Circuits 7, 177.
  22. Scheiffele P, Fan J, Choih J, Fetter R, and Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657-669. https://doi.org/10.1016/S0092-8674(00)80877-6
  23. Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W, Fetter R D, and Hess H F (2009) Interferometric fluorescent superresolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U.S.A. 106, 3125-3130. https://doi.org/10.1073/pnas.0813131106
  24. Sigal Y M, Speer C M, Babcock H P, and Zhuang X (2015) Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163, 493-505. https://doi.org/10.1016/j.cell.2015.08.033
  25. Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns V M, Sankaran S, Grosenick L, Broxton M, Yang S, and Deisseroth K (2015) SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796-1806. https://doi.org/10.1016/j.cell.2015.11.061