DOI QR코드

DOI QR Code

Transmission Electron Microscopy on Memristive Devices: An Overview

  • Received : 2016.12.23
  • Accepted : 2016.12.25
  • Published : 2016.12.30

Abstract

This communication is to elucidate the state-of-the-art of techniques necessary to gather information on a new class of nanoelectronic devices known as memristors and related resistive switching devices, respectively. Unlike classical microelectronic devices such as transistors, the chemical and structural variations occurring upon switching of memristive devices require cutting-edge electron microscopy techniques. Depending on the switching mechanism, some memristors call for the acquisition of atomically resolved structural data, while others rely on atomistic chemical phenomena requiring the application of advanced X-ray and electron spectroscopy to correlate the real structure with properties. Additionally, understanding resistive switching phenomena also necessitates the application not only of pre- and post-operation analysis, but also during the process of switching. This highly challenging in situ characterization also requires the aforementioned techniques while simultaneously applying an electrical bias. Through this review we aim to give an overview of the possibilities and challenges as well as an outlook onto future developments in the field of nanoscopic characterization of memristive devices.

Keywords

References

  1. Aoki Y, Wiemann C, Feyer V, Kim H S, Schneider C M, Ill-Yoo H, and Martin M (2014) Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 5, 3473. https://doi.org/10.1038/ncomms4473
  2. Arita M, Ohno Y, and Takahashi Y (2016) Switching of Cu/MoOx/TiN CBRAM at MoOx/TiN interface. Phys. Status Solidi A 213, 306-310. https://doi.org/10.1002/pssa.201532414
  3. Avizienis A V, Sillin H O, Martin-Olmos C, Shieh H H, Aono M, Stieg A Z, and Gimzewski J K (2012) Neuromorphic atomic switch networks. PLoS One 7, e42772. https://doi.org/10.1371/journal.pone.0042772
  4. Calka P, Martinez E, Delaye V, Lafond D, Audoit G, Mariolle D, Chevalier N, Grampeix H, Cagli C, Jousseaume V, and Guedj C (2013) Chemical and structural properties of conducting nanofilaments in TiN/$HfO_2$-based resistive switching structures. Nanotechnology 24, 85706. https://doi.org/10.1088/0957-4484/24/8/085706
  5. Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, and Tsai M J (2008) Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 22110. https://doi.org/10.1063/1.2834852
  6. Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthelemy A, and Grollier J (2012) A ferroelectric memristor. Nat. Mater. 11, 860-864. https://doi.org/10.1038/nmat3415
  7. Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W, and Chen L J (2013) Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671-3677. https://doi.org/10.1021/nl4015638
  8. Chen J Y, Huang C W, Chiu C H, Huang Y T, and Wu W W (2015) Switching kinetic of VCM-based memristor: evolution and positioning of nanofilament. Adv. Mater. 27, 5028-5033. https://doi.org/10.1002/adma.201502758
  9. Chiang Y D, Chang W Y, Ho C Y, Chen C Y, Ho C H, Lin S J, Wu T B, and He J H (2011) Single-ZnO-nanowire memory. IEEE Trans. Electron Devices 58, 1735-1740. https://doi.org/10.1109/TED.2011.2121914
  10. Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, and Kim K (2011) In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272-3277. https://doi.org/10.1002/adma.201100507
  11. Di Martino G, Tappertzhofen S, Hofmann S, and Baumberg J (2016) Nanoscale plasmon-enhanced spectroscopy in memristive switches. Small 12, 1334-1341. https://doi.org/10.1002/smll.201503165
  12. Dirkmann S, Hansen M, Ziegler M, Kohlstedt H, and Mussenbrock T (2016) The role of ion transport phenomena in memristive double barrier devices. Sci. Rep. 6, 35686. https://doi.org/10.1038/srep35686
  13. Egerton R F (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575-586. https://doi.org/10.1016/j.ultramic.2006.11.005
  14. Egerton R F (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, New York).
  15. Fan Z, Fan X, Li A, and Dong L (2013) In situ forming, characterization, and transduction of nanowire memristors. Nanoscale 5, 12310-12315. https://doi.org/10.1039/c3nr03383j
  16. Giannuzzi L A (2012) Routine backside FIB milling with EXpressLO. In: Proceedings from ISTFA 2012, pp. 388-390, (ASM International, Materials Park).
  17. Giannuzzi L A and Stevie F A (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197-204. https://doi.org/10.1016/S0968-4328(99)00005-0
  18. Guo A, Li D, Li W, Gu D, Jiang X, and Jiang Y (2016) The relation of structure and dispersion to amorphous silicon silver thin films. Mater. Lett. 185, 5-8. https://doi.org/10.1016/j.matlet.2016.08.089
  19. Hammad Fawey M, Chakravadhanula V S K, Reddy M A, Rongeat C, Scherer T, Hahn H, Fichtner M, and Kubel C (2016) In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: preparation, prospects, and challenges. Microsc. Res. Tech. 79, 615-624. https://doi.org/10.1002/jemt.22675
  20. Hansen M, Ziegler M, Kolberg L, Soni R, Dirkmann S, Mussenbrock T, and Kohlstedt H (2015) A double barrier memristive device. Sci. Rep. 5, 13753. https://doi.org/10.1038/srep13753
  21. Hasegawa T, Terabe K, Tsuruoka T, and Aono M (2012) Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers. Adv. Mater. 24, 252-267. https://doi.org/10.1002/adma.201102597
  22. Hirotsu Y, Ishimaru M, Ohkubo T, Hanada T, and Sugiyama M (2001) Application of nano-diffraction to local atomic distribution function analysis of amorphous materials. J. Electron Microsc. 50, 435-442. https://doi.org/10.1093/jmicro/50.6.435
  23. Huang C H, Huang J S, Lin S M, Chang W Y, He J H, and Chueh Y L (2012) $ZnO_{1-x}$ nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407-8414. https://doi.org/10.1021/nn303233r
  24. Huang Y T, Yu S Y, Hsin C L, Huang C W, Kang C F, Chu F H, Chen J Y, Hu J C, Chen L T, He J H, and Wu W W (2013) In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. Anal. Chem. 85, 3955-3960. https://doi.org/10.1021/ac303528m
  25. Ilari G M, Chawla V, Matam S, Zhang Y, Michler J, and Erni R (2016) Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron 84, 37-42. https://doi.org/10.1016/j.micron.2016.02.009
  26. Ishitani T and Yaguchi T (1996) Cross-sectional sample preparation by ion beam: a review of ion-sample interaction. Microsc. Res. Tech. 35, 320-333. https://doi.org/10.1002/(SICI)1097-0029(19961101)35:4<320::AID-JEMT3>3.0.CO;2-Q
  27. Jang M H, Agarwal R, Nukala P, Choi D, Johnson A T C, Chen I W, and Agarwal R (2016) Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction. Nano Lett. 16, 2139-2144. https://doi.org/10.1021/acs.nanolett.5b02951
  28. Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S, and Choi S Y (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381-4386. https://doi.org/10.1021/nl101902k
  29. Jeong H Y, Lee J Y, Choi S Y, and Kim J W (2009) Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108. https://doi.org/10.1063/1.3251784
  30. Kang H J, Kim J H, Oh J W, Back T S, and Kim H J (2010) Ultra-thin TEM sample preparation with advanced backside FIB milling method. Microsc. Microanal. 16, 170-171. https://doi.org/10.1017/S1431927610054474
  31. Kato N I (2004) Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron Microsc. 53, 451-458. https://doi.org/10.1093/jmicro/dfh080
  32. Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N, and Lu W (2012) A functional hybrid memristor crossbar-array/CMOS System for data storage and neuromorphic applications. Nano Lett. 12, 389-395. https://doi.org/10.1021/nl203687n
  33. Kim S, Park J, Jung S, Lee W, Woo J, Cho C, Siddik M, Shin J, Park S, Lee B H, and Hwang H (2011) Excellent resistive switching in nitrogendoped Ge2Sb2Te5 devices for field-programmable gate array configurations. Appl. Phys. Lett. 99, 192110. https://doi.org/10.1063/1.3659692
  34. Kimura M, Honda K, Yodogawa S, Ohtsuka K, Oo T N, Miyashita K, Hirata H, and Akahane T (2012) Flexible LCDs fabricated with a slit coater: not requiring an alignment film. J. Soc. Inf. Disp. 20, 633-639. https://doi.org/10.1002/jsid.125
  35. Koo H J, So J H, Dickey M D, and Velev O D (2011) Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559-3564. https://doi.org/10.1002/adma.201101257
  36. Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, and Hwang C S (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148-153. https://doi.org/10.1038/nnano.2009.456
  37. Langford R M and Clinton C (2004) In situ lift-out using a FIB-SEM system. Micron 35, 607-611. https://doi.org/10.1016/j.micron.2004.03.002
  38. Lee A R, Baek G H, Kim T Y, Ko W B, Yang S M, Kim J, Im H S, and Hong J P (2016) Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames. Sci. Rep. 6, 30333. https://doi.org/10.1038/srep30333
  39. Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H, and Miao X (2013) Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619. https://doi.org/10.1038/srep01619
  40. Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C, and Chueh Y L (2014) Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537-16544. https://doi.org/10.1021/am502741m
  41. Lin C Y, Lee D Y, Wang S Y, Lin C C, and Tseng T Y (2008) Effect of thermal treatment on resistive switching characteristics in Pt/Ti/$Al_2O_3$/Ptdevices. Surf. Coat. Technol. 203, 628-631. https://doi.org/10.1016/j.surfcoat.2008.06.133
  42. Lin L, Liu L, Musselman K, Zou G, Duley W W, and Zhou Y N (2016) Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 5979-5986.
  43. Liu P H, Lin C C, Manekkathodi A, and Chen L J (2015) Multilevel resistance switching of individual Cu2S nanowires with inert electrodes. Nano Energy 15, 362-368. https://doi.org/10.1016/j.nanoen.2015.05.001
  44. Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z, Chen J, and Liu M (2010) Controllable growth of nanoscale conductive filaments in solidelectrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162-6168. https://doi.org/10.1021/nn1017582
  45. Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L, and Liu M (2012) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844-1849. https://doi.org/10.1002/adma.201104104
  46. Mayer J, Giannuzzi L A, Kamino T, and Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bulletin 32, 400-407. https://doi.org/10.1557/mrs2007.63
  47. Munroe P R (2009) The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60, 2-13. https://doi.org/10.1016/j.matchar.2008.11.014
  48. Ohnishi H, Kondo Y, and Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780-783. https://doi.org/10.1038/27399
  49. Pena F, Ostasevicius T, Fauske V T, Burdet P, Jokubauskas P, Sarahan M, Johnstone D, Nord M, Taillon J, Caron J, MacArthur K E, Eljarrat A, Mazzucco S, Furnival T, Prestat E, Walls M, Donval G, Martineau B, Zagonel L F, Garmannslund A, Aarholt T, Gohlke C, and iygr (2016) hyperspy: HyperSpy 1.1.
  50. Pino R E, Bohl J W, McDonald N, Wysocki B, Rozwood P, Campbell K A, Oblea A, and Timilsina A (2010) Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices. In: 2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 1-4, (IEEE).
  51. Privitera S, Bersuker G, Butcher B, Kalantarian A, Lombardo S, Bongiorno C, Geer R, Gilmer D C, and Kirsch P D (2013) Microscopy study of the conductive filament in $HfO_2$ resistive switching memory devices. Microelectron. Eng. 109, 75-78. https://doi.org/10.1016/j.mee.2013.03.145
  52. Privitera S, Bersuker G, Lombardo S, Bongiorno C, and Gilmer D C (2015) Conductive filament structure in $HfO_2$ resistive switching memory devices. Solid-State Electron. 111, 161-165. https://doi.org/10.1016/j.sse.2015.05.044
  53. Qian K, Nguyen V C, Chen T, and Lee P S (2016a) Amorphous-Si-based resistive switching memories with highly reduced electroforming voltage and enlarged memory window. Adv. Electron. Mater. 2, 1500370. https://doi.org/10.1002/aelm.201500370
  54. Qian K, Tay R Y, Nguyen V C, Wang J, Cai G, Chen T, Teo E H T, and Lee P S (2016b) Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26, 2176-2184. https://doi.org/10.1002/adfm.201504771
  55. Savel'ev S E, Alexandrov A S, Bratkovsky A M, and Williams R S (2011) Molecular dynamics simulations of oxide memristors: thermal effects. Appl. Phys. A: Mater. Sci. Process. 102, 891-895. https://doi.org/10.1007/s00339-011-6293-4
  56. Seo S, Lee M J, Seo D H, Jeoung E J, Suh D S, Joung Y S, Yoo I K, Hwang I R, Kim S H, Byun I S, Kim J S, Choi J S, and Park B H (2004) Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655-5657. https://doi.org/10.1063/1.1831560
  57. Song J, Zhang Y, Xu C, Wu W, and Wang Z L (2011) Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11, 2829-2834. https://doi.org/10.1021/nl2011966
  58. Stoger-Pollach M, Franco H, Schattschneider P, Lazar S, Schaffer B, Grogger W, and Zandbergen H W (2006) Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis. Micron 37, 396-402. https://doi.org/10.1016/j.micron.2006.01.001
  59. Stoger-Pollach M, and Schattschneider P (2007) The influence of relativistic energy losses on bandgap determination using valence EELS. Ultramicroscopy 107, 1178-1185. https://doi.org/10.1016/j.ultramic.2007.01.015
  60. Strachan J P, Pickett M D, Yang J J, Aloni S, David Kilcoyne A L, Medeiros-Ribeiro G, and Stanley Williams R (2010) Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573-3577. https://doi.org/10.1002/adma.201000186
  61. Strachan J P, Yang J J, Montoro L A, Ospina C A, Ramirez A J, Kilcoyne A L D, Medeiros-Ribeiro G, and Williams R S (2013) Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol. 4, 467-473. https://doi.org/10.3762/bjnano.4.55
  62. Sun X, Yu B, Ng G, and Meyyappan M (2007) One-dimensional phasechange nanostructure: germanium telluride nanowire. J. Phys. Chem. C 111, 2421-2425. https://doi.org/10.1021/jp0658804
  63. Tian X, Wang L, Wei J, Yang S, Wang W, Xu Z, and Bai X (2014) Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 7, 1065-1072. https://doi.org/10.1007/s12274-014-0469-0
  64. Toufik S, Liping W, Louis G, and Asen A (2015) Physical simulation of sibased resistive randomaccess memory devices. In: Proceedings from SISPAD 2015, pp. 385-388, (IEEE).
  65. Tseng A A (2004) Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15. https://doi.org/10.1088/0960-1317/14/4/R01
  66. Valov I and Kozicki M N (2013) Cation-based resistance change memory. J. Phys. D: Appl. Phys. 46, 74005. https://doi.org/10.1088/0022-3727/46/7/074005
  67. Vasudevan R K, Matsumoto Y, Cheng X, Imai A, Maruyama S, Xin H L, Okatan M B, Jesse S, Kalinin S V, and Nagarajan V (2014) Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat. Commun. 5, 4971. https://doi.org/10.1038/ncomms5971
  68. Vieweg B F, Butz B, Peukert W, Klupp Taylor R N, and Spiecker E (2012) TEM preparation method for site- and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry. Ultramicroscopy 113, 165-170. https://doi.org/10.1016/j.ultramic.2011.11.015
  69. Waser R (2012) Redox-based resistive switching memories. J. Nanosci. Nanotechnol. 12, 7628-7640. https://doi.org/10.1166/jnn.2012.6652
  70. Wu X, Li K, Raghavan N, Bosman M, Wang Q X, Cha D, Zhang X X, and Pey K L (2011) Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-${\kappa}$ dielectric based resistive random access memory. Appl. Phys. Lett. 99, 93502. https://doi.org/10.1063/1.3624597
  71. Xia Q (2011) Nanoscale resistive switches: devices, fabrication and integration. Appl. Phys. A: Mater. Sci. Process. 102, 955-965. https://doi.org/10.1007/s00339-011-6288-1
  72. Xia Q, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, and Williams R S (2009) Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640-3645. https://doi.org/10.1021/nl901874j
  73. Yan H, Choe H S, Nam S, Hu Y, Das S, Klemic J F, Ellenbogen J C, and Lieber C M (2011) Programmable nanowire circuits for nanoprocessors. Nature 470, 240-244. https://doi.org/10.1038/nature09749
  74. Yang Y, Gao P, Gaba S, Chang T, Pan X, and Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732. https://doi.org/10.1038/ncomms1737
  75. Yao I C, Lee D Y, Tseng T Y, and Lin P (2012) Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices. Nanotechnology 23, 145201. https://doi.org/10.1088/0957-4484/23/14/145201
  76. Zalden P, Shu M J, Chen F, Wu X, Zhu Y, Wen H, Johnston S, Shen Z X, Landreman P, Brongersma M, Fong S W, Wong H S P, Sher M J, Jost P, Kaes M, Salinga M, von Hoegen A, Wuttig M, and Lindenberg A M (2016) Picosecond electric-field-induced threshold switching in phase-change materials. Phys. Rev. Lett. 117, 67601. https://doi.org/10.1103/PhysRevLett.117.067601

Cited by

  1. Electron Beam Effects on Silicon Oxide Films – Structure and Electrical Properties vol.24, pp.S1, 2018, https://doi.org/10.1017/S1431927618009534