DOI QR코드

DOI QR Code

Switch-on Phenomena and Field Emission from Multi-Walled Carbon Nanotubes Embedded in Glass

  • Received : 2016.07.20
  • Accepted : 2016.11.10
  • Published : 2016.12.30

Abstract

This paper describes a new design of carbon nanotube tip. $Nanocly^{TM}$ NC 7000 Thin Multiwall Carbon Nanotubes of carbon purity (90%) and average diameter tube 9.5 nm with a high aspect-ratio (>150) were used. These tips were manufactured by employing a drawing technique using a glass puller. The glass microemitters with internal carbon nanotubes show a switch-on effect to a high current level (1 to $20{\mu}A$). A field electron microscope with a tip (cathode)-screen (anode) separation at ~10 mm was used to characterize the electron emitters. The system was evacuated down to a base pressure of ${\sim}10^{-9}$ mbar when baked at up to ${\sim}200^{\circ}C$ overnight. This allowed measurements of typical Field Electron Emission characteristics; namely the current-voltage (I-V) characteristics and the emission images on a conductive phosphorus screen (the anode). Fowler-Nordheim plots of the current-voltage characteristics show current switch-on for each of these emitters.

Keywords

References

  1. Al-Qudah M A, Mousa M S, and Fischer A (2015) Effect of insulating layer on the field electron emission performance of nano-apex metallic emitters. Mater. Sci. Eng. 92, 012021.
  2. Bonard J M, Croci M, Klinke C, Kurt R, Noury O, and Weiss N (2002) Carbon nanotube films as electron field emitters. Carbon 40, 1715-1728. https://doi.org/10.1016/S0008-6223(02)00011-8
  3. Bonard J M, Maier F, Stockli T, Chatelain A, de Heer W A, Salvetat J P, and Forro L (1998) Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 73, 7-15. https://doi.org/10.1016/S0304-3991(97)00129-0
  4. Bonard J M, Salvetat J P, Stockli T, Forro L, and Chatelain A (1999) Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A 69, 245-254.
  5. Choi W B, Chung D S, Lee J H, Jung J E, Lee N S, Park G S, and Kim J M (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129-3131. https://doi.org/10.1063/1.125253
  6. de Jonge N and Bonard J M (2004) Carbon nanotube electron sources and applications. Phil. Trans. R. Soc. Lond. A 362, 2239-2266. https://doi.org/10.1098/rsta.2004.1438
  7. Forbes R G (2012) Extraction of emission parameters for large-area field emitters, using a technically comlete Fowler-Nordheim-type equation. Nanotechnology 23, 095706. https://doi.org/10.1088/0957-4484/23/9/095706
  8. Forbes R G, Deane J H B, Fischer A, and Mousa M S (2015) Fowler-Nordheim plot analysis: a progress report. Jordan J. Phys. 8, 125-147.
  9. Groning O, Kuttel O M, Emmenegger C, Groning P, and Schlapbach L (2000) Field emission properties of carbon nanotubes. J. Vac. Sci. Technol. B 18, 665-678.
  10. Iijima S (1991) Helical microtubles of graphitic carbon. Nature 354, 56-58. https://doi.org/10.1038/354056a0
  11. Kim W K (2013) Ambient variable pressure field emission scanning electron microscopy for trichome profiling of plectranthus tomentosaby secondary electron imaging. Appl. Microsc. 43, 34-39. https://doi.org/10.9729/AM.2013.43.1.34
  12. Kyritsakis A and Xanthakis J P (2015) Derivation of a generalized Fowler-Nordheim equation for nanoscopic field-emitters. Proc. R. Soc. A 471, 20140811. https://doi.org/10.1098/rspa.2014.0811
  13. Latham R V and Mousa M S (1986) Hot electron emission from composite metal-insulator micropoint cathodes. Appl. Phys. 19, 699-713.
  14. Latham R V and Salim M A (1987) A microfocus cathode ray tube using an externally stabilized carbon-fibre field-emitting source. J. Phys. E.: Sci. Instrum. 20, 181-188. https://doi.org/10.1088/0022-3735/20/2/012
  15. Lee S C, Irokawa Y, Inoue M, and Shimizu R (1995) Behavior of zirconium in the Zr-O/W(lO0) system at high temperature, studied by ISS, AES and work-function measurements. Surf. Sci. 330, 289-296. https://doi.org/10.1016/0039-6028(95)00432-7
  16. Madanat M A, Mousa M S, Al-Rabadi A N, and Fisher A (2015) Electron microscopy-based performance evaluation of various tungsten fieldemitter tips apex radii. Jordan J. Phys. 8, 79-85.
  17. Moran Meza J A, Lubin C, Thoyer F, Villegas Rosales L A, Guitarra Espinoza A A, Martin F, and County J (2015) Fabrication of ultra-sharp tips from carbon fiber for scanning tunneling microscopy investigations of epitaxial graphene on 6H-SiC(0001) surface. Carbon 86, 363-370. https://doi.org/10.1016/j.carbon.2015.01.050
  18. Mousa M S (1991) Effect of an internally conductive coating on the electron emission from glass tips. Surf. Sci. 246, 79-86. https://doi.org/10.1016/0039-6028(91)90397-B
  19. Mousa M S, Alnawasreh S, Madanat M A, and Al-Rabadi A N (2015) Investigation of the field emission performance on nano-apexcarbon fiber and tungesten tips. Mater. Sci. Eng. 92, 12-22.
  20. Mousa M S and Hibbert D B (1993a) Field emission of electrons from glass tips with internal conducting coats. J. Phys. D: Appl. Phys. 26, 697-703. https://doi.org/10.1088/0022-3727/26/4/026
  21. Mousa M S and Hibbert D B (1993b) Analysis of some properties of metal-glass microemitters subjected to strong electric field. Appl. Surf. Sci. 67, 59-65. https://doi.org/10.1016/0169-4332(93)90295-M
  22. Saito R, Dresselhaus G, and Dresselhaus M S (1998) Physical Properties of Carbon Nanotubes (Imperial College Press, London).
  23. Saito Y and Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169-182. https://doi.org/10.1016/S0008-6223(99)00139-6
  24. Swanson L W and Bell A E (1973) Recent advances in field electron microscopy of metals. Adv. Electron. Electron Phys. 23, 193-309.
  25. Thien V B, Garcia N, and Purcell S T (1996) Electron field emission from atom-sources: fabrication, properties, and applications of nanotips. Adv. Imaging Electron Phys. 95, 63-82. https://doi.org/10.1016/S1076-5670(08)70156-3

Cited by

  1. Fractal Approach to Alternating Current Impedance Spectroscopy Studies of Carbon Nanotubes/Epoxy Polymer Composites vol.47, pp.3, 2017, https://doi.org/10.9729/AM.2017.47.3.126
  2. Switch-on Phenomena and Field Emission from Single-Walled Carbon Nanotubes Embedded in Glass vol.47, pp.3, 2017, https://doi.org/10.9729/AM.2017.47.3.86
  3. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip vol.305, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/305/1/012022
  4. Use of tapered Pyrex capillary tubes to increase the mechanical stability of multiwall carbon nanotubes field emitters vol.305, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/305/1/012026