References
- Alderson, C. J., Wall, D., & Claphaim, C. (1996). Language Test Construction and Evaluation. Cambridge: Cambridge University Press.
- Cheun, S. (2004). Phonology. Seoul: Seoul National University Press. (전상범 (2004). 음운론. 서울: 서울대학교 출판부.)
- Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York: Harper & Row.
- Cincarek, T., Gruhn, R., Hacker, C., Noth, E., & Nakamura, S. (2009). Automatic pronunciation scoring of words and sentences independent from the non-native's first language. Computer Speech & Language, 23(1), 65-88. https://doi.org/10.1016/j.csl.2008.03.001
- Cucchiarini, C., Strik, H., & Boves, L. (2000a). Different aspects of expert pronunciation quality ratings and their relation to scores produced by speech recognition algorithms. Speech Communication, 30(2-3), 109-119. https://doi.org/10.1016/S0167-6393(99)00040-0
- Cucchiarini, C., Strik, H., & Boves, L. (2000b). Quantitative assessment of second language learners' fluency by means of automatic speech recognition technology. Journal of the Acoustical Society of America, 107(2), 989-999. https://doi.org/10.1121/1.428279
- Cucchiarini, C., Strik, H., & Boves, L. (2002). Quantitative assessment of second language learners' fluency: Comparisons between read and spontaneous speech. Journal of the Acoustical Society of America, 111(6), 2862-2873. https://doi.org/10.1121/1.1471894
- Downey, R., Farhady, H., Present-Thomas, R., Suzuki, M., & Van Moere, A. (2008). Evaluation of the Usefulness of the Versant for English Test: A Response. Language Assessment Quarterly, 5(2), 160-167. https://doi.org/10.1080/15434300801934744
- Eskenazi, M. (2009). An overview of spoken language technology for education. Speech Communication, 51(10), 832-844. https://doi.org/10.1016/j.specom.2009.04.005
- Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing.
- Franco, H., Neumeyer, L., Yoon, K., & Ronen, O. (1997). Automatic pronunciation scoring for language instruction. Proceedings of IEEE International Conference on the Acoustics, Speech, and Signal Processing(ICASSP) 1997 (pp. 1471-1474). Munchen, Germany. 21-24 April, 1997.
- Garofalo, J., Graff, D., Paul, D., & Pallett, D. (2007). CSR-1 (WSJ0) complete. Philadelphia: Linguistic Data Consortium.
- Hong, H., Kim, S., & Chung, M. (2011). How Korean learner's English proficiency level affects English speech production variations. Phonetics and Speech Sciences, 3(3), 115-121.
- Hong, H., Kim, S., & Chung, M. (2014). A corpus-based analysis of English segments produced by Korean learners. Journal of Phonetics, 46, 52-67. https://doi.org/10.1016/j.wocn.2014.06.002
- Hong, H., Ryu, H., & Chung, M. (2014). The relationship between segmental production by Japanese learners of Korean and pronunciation evaluation. Phonetics and Speech Sciences, 6(4), 101-108. (홍혜진.류혁수.정민화 (2014). 일본인 한국어 학습자의 분절음 실현과 발음 평가의 상관성. 말소리와 음성과학, 6(4), 101-108.) https://doi.org/10.13064/KSSS.2013.6.4.101
- James, J., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with application in R. New York: Springer.
- Jang, T. (2005). Construction of an English speech database for Korean learners of English, Language and Linguistics, 35, 292-309. (장태엽 (2005). 한국인 영어학습자의 영어음성 데이터베이스 구축에 관한 연구. 언어와 언어학, 35, 292-309)
- Kirchhoff, K., Fink, G. A., & Sagerer, G. (2002). Combining acoustic and articulatory feature information for robust speech recognition. Speech Communication, 37(3-4), 303-319. https://doi.org/10.1016/S0167-6393(01)00020-6
- Lee, C.-H. (2004). From Knowledge-Ignorant to Knowledge-Rich Modeling: A New Speech Research Paradigm for Next Generation Automatic Speech Recognition. Proceedings of INTERSPEECH 2004 (pp. 109-112). Jeju Island, Korea. 4-8 October, 2004.
- Lee, C.-H., Clements, M. A., Dusan, S., Fosler-Lussier, E., Johnson, K., Juang, B.-H., & Rabiner, L. R. (2007). An overview on automatic speech attribute transcription (ASAT). Proceedings of INTERSPEECH 2007 (pp. 1825-1828). Antwerp, Belgium. 27-31 August, 2007.
- Li, W., Li, K., Siniscalchi, S. M., Chen, N. F., & Lee, C.-H. (2016). Detecting Mispronunciations of L2 Learners and Providing Corrective Feedback Using Knowledge-guided and Data-driven Decision Trees. Proceedings of INTERSPEECH 2016 (pp. 3127-3131). San Francisco, CA. 8-12 September, 2016.
- Lumley, T., & Miller, A. (2009). leaps: regression subset selection. Retrieved from https://cran.r-project.org/package=leaps on October 20, 2016.
- Metze, F. (2005). Articulatory features for conversational speech recognition. Ph.D. Dissertation, Universitat Fridericiana zu Karlsruhe, Munchen, Germany.
- Neumeyer, L., Franco, H., Digalakis, V., & Weintraub, M. (2000). Automatic scoring of pronunciation quality. Speech Communication, 30(2-3), 83-93. https://doi.org/10.1016/S0167-6393(99)00046-1
- Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovky, J., Stemmer, G., & Vesely, K. (2011). The Kaldi speech recognition toolkit. Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2011).
- R Core Team (2016). R: language and environment for statistical computing. Retrieved from http://www.r-project.org on October 20, 2016.
- Rhee, S., Lee, S., Kang, S., & Lee, Y. (2003). Design and Construction of Korea-Spoken English Corpus (K-SEC). Malsori, 46, 159-174. (이석재.이숙향.강석근.이용주 (2003). 한국인의 영어 음성 코퍼스 설계 및 구축. 말소리, 46, 159-174.)
- Richardson, M., Bilmes, J., & Diorio, C. (2003). Hidden-articulator Markov models for speech recognition. Speech Communication, 41(2-3), 511-529. https://doi.org/10.1016/S0167-6393(03)00031-1
- Ryu, H., & Chung, M. (2016). Automatic pronunciation assessment of English spoken by Korean learners using phone-level articulatory posterior probability. Proceedings of the 2016 spring conference of the Korean society of Speech Sciences (pp. 101-102). (류혁수.정민화 (2016). 조음 기반의 음소 레벨 사후 확률을 이용한 한국인 영어 학습자 유창성 자동 평가. 한국음성학회 봄 학술대회 발표논문집, 101-102.)
- Ryu, H., Hong, H., Kim, S., & Chung, M. (2016). Automatic Pronunciation Assessment of Korean Spoken by L2 Learners Using Best Feature Set Selection. Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA ASC) 2016, accepted.
- Shi, S., Kashiwagi, Y., Toyama, S., Yue, J., Yamauchi, Y., Saito, D., & Minematsu, N. (2016) Automatic assessment and error detection of shadowing speech: case of English spoken by Japanese learners. Proceedings of INTERSPEECH 2016 (pp. 3142-3146). San Francisco, CA. 8-12 Sep, 2016.
- Siniscalchi, S. M., Svendsen, T., & Lee, C.-H. (2008). Toward a detector-based universal phone recognizer. Proceedings of IEEE International Conference on the Acoustics, Speech, and Signal Processing(ICASSP) 2008 (pp. 4261-4264). Las Vegas, NV. 31 March - 04 April, 2008.
- Tepperman, J., & Narayanan, S. (2008). Using articulatory representations to detect segmental errors in nonnative pronunciation. IEEE Transactions on Audio, Speech, and Language Processing, 16(1), 8-22. https://doi.org/10.1109/TASL.2007.909330
- Weide, R. L. (2014). The CMU pronouncing dictionary 0.7b. Retrieved from http://www.speech.cs.cmu.edu/cgi-bin/cmudicton October 20, 2016.
- Witt, S. M., & Young, S. J. (2000). Phone-level pronunciation scoring and assessment for interactive language learning. Speech Communication, 30(2-3), 95-108. https://doi.org/10.1016/S0167-6393(99)00044-8
- Zechner, K., Higgins, D., Xi, X. M., & Williamson, D. M. (2009). Automatic scoring of non-native spontaneous speech in tests of spoken English. Speech Communication, 51(10), 883-895. https://doi.org/10.1016/j.specom.2009.04.009