DOI QR코드

DOI QR Code

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption

환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구

  • Kim, Gi Yong (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Jang, Sung-Chan (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Song, Young Ho (Department of Biological Science, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Huh, Yun Suk (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Roh, Changhyun (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
  • 김지용 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 장성찬 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 송영호 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 이창수 (충남대학교 공과대학 화학공학과) ;
  • 허윤석 (인하대학교 생명공학과) ;
  • 노창현 (한국원자력연구원 첨단방사선연구소 생명공학연구부)
  • Received : 2016.09.13
  • Accepted : 2016.10.24
  • Published : 2016.12.31

Abstract

One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.

현재 전 세계적으로 원자력 발전소가 직면하고 있는 문제 중 가장 큰 문제는 방사성 핵종($^{134}Cs$, $^{135}Cs$, $^{137}Cs$)에 오염된 핵 폐기물 저장 및 처리시설 확충이다. 원자력 발전소의 꾸준한 증가율에 비하여 방사성 폐기물을 처리할 수 있는 처리시설의 공간적 한계에 직면하고 있기 때문이다. 이에 환경 친화적이면서 효율적인 폐기물 처리방법의 개발이 시급하다. 이에 따라, 경제적이면서 높은 회수율을 가지는 균주와 세슘 이온의 상호 작용을 통한 방사성 세슘 생물학적 흡착에 대한 연구가 각광받고 있다. 하지만, 현재 세슘 저항성을 지닌 균주는 많이 보고되어 있지 않은 상태이다. 본 연구는 한국원자력연구원 첨단방사선 연구소 주변에서 샘플을 채취하여 세슘 저항성을 지닌 균주를 선별하였다. 세슘 저항성 균주 선별 방법은 다음과 같다. 샘플 및 100 mM CsCl을 R2A 액체 배지에 첨가한 뒤, 72시간 후에 살아남은 균주들을 16S rRNA 염기서열을 NCBI's BlastN의 database의 균주들의 염기서열과 비교/분석을 하여 균주를 동정 분석하였다. 동정 분석 결과, B. anthracis Roh-1, B. cereus Roh-2 균주들이 세슘 저항성 우점종 균주인 것을 확인할 수 있었다. B. cereus Roh-2 균주가 B. anthracis Roh-1 균주보다 세슘에 대한 저항성을 보이는 것을 본 실험을 통해 확인할 수 있었으며, 특히 50 mM CsCl 환경에서 B. cereus Roh-2 균주는 B. anthracis Roh-1 균주보다 최대 30% 이상 세슘에 대해 저항성을 가지는 것을 확인하였다. 또한, $0.2mg\;L^{-1}$ $Cs^+$가 함유된 R2A 배지를 24시간 동안 처리하였을 때, B. anthracis Roh-1 균주는 g당 최대 $2.01mg\;L^{-1}$의 세슘 흡착능을 유도결합플라즈마 질량분석기 분석을 통해 확인하였다. 본 세슘 저항성 균주 스크리닝 기술 및 선별된 균주들은 차후에 방사성 오염지역 생물학적 환경 정화 및 제염해체를 위한 플랫폼 기술로 활용될 수 있을 것으로 보인다.

Keywords

References

  1. Ahimou F, CJ Boonaert, Y Adriaensen, P Jacques, P Thonart, M Paquot and PG Rouxhet. 2007. XPS analysis of chemical functions at the surface of Bacillus subtilis. J. Colloid Interface Sci. 309:49-55. https://doi.org/10.1016/j.jcis.2007.01.055
  2. Avery SV. 1995. Caesium accumulation by microogranisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Mircrobiol. Biotechnol. 14:76-84.
  3. Avery SV. 1995. Microbial interactions with caesium-implica-tions for biotechnology. J. Chem. Technol. Biotechnol. 62: 3-16. https://doi.org/10.1002/jctb.280620102
  4. Beazley MJ, RJ Martinez, PA Sobecky, SM Webb and M Taillefert. 2007. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ. Sci. Technol. 41: 5701-5707. https://doi.org/10.1021/es070567g
  5. Bossemeyer D, A Schlosser and EP Bakker. 1989. Specific cesium transport via the Escherichia coli Kup (TrkD) $K^+$ uptake system. J. Bacteriol. 171:2219-2221. https://doi.org/10.1128/jb.171.4.2219-2221.1989
  6. Brookshaw DR, JR Lloyd, DJ Vaughan and RA Pattrick. 2016. Effects of microbial Fe (III) reduction on the sorption of Cs and Sr on biotite and chlorite. Geomicrobiol. J. 33:206-215. https://doi.org/10.1080/01490451.2015.1076543
  7. Budnitz RJ. 2016. Nuclear power: Status report and future prospects. Energy Policy. 96:735-739. https://doi.org/10.1016/j.enpol.2016.03.011
  8. Chakaraborty D, S Maljin, A bandyopadhyay and S Basu. 2007. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol. 98: 2949-2952. https://doi.org/10.1016/j.biortech.2006.09.035
  9. Cho DK, SK Yoon, HJ Choi, J Choi and WL Ko. 2008. Reference Spent Nuclear Fuel for Pyroprocessing Facility Design. J. Nucl. Fuel Cycle Waste Technol. 6:225-232.
  10. Choudhary S and P Sar. 2011. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J. Hazard. Matter. 186:336-343. https://doi.org/10.1016/j.jhazmat.2010.11.004
  11. Davis LW. 2012. Prospects for nuclear power. J. Econ. Perspect. 26:49-65.
  12. Dekker L, TH Osborne and JM Santini. 2014. Isolation and identification of cobalt-and caesium-resistant bacteria from a nuclear fuel storage pond. FEMS Microbiol. Lett. 359: 81-84. https://doi.org/10.1111/1574-6968.12562
  13. Fisel S, V Dulman and A Cecal. 1976. Enrichment of $Cs^{+}$, $Ca^{2+}$ and $Tl^{+}$ ions with microbiological collectors. J. Radioanal. Nucl. Chem. 34:285-289. https://doi.org/10.1007/BF02519577
  14. Gallegos DP and EJ Bonano. 1993. Consideration of uncertainty in the performance assessment of radioactive waste disposal from an international regulatory perspective. Reliability Engineering & System Safety 42:111-123. https://doi.org/10.1016/0951-8320(93)90085-D
  15. Gershey EL, R Klein, E Party and A Wilkerson. 1990. Lowlevel radioactive waste. Van Nostrand Reinhold Publisher (NY. USA).
  16. Harvey R and R Patrick. 1967. Concentration of $^{137}Cs$, $^{65}Zn$, and $^{85}Sr$ by fresh-water algae. Biotechnol. Bioeng. 9:449-456. https://doi.org/10.1002/bit.260090402
  17. Ivshina I, T Peshkur and V Korobov. 2002. Efficient uptake of cesium ions by rhodococcus cells. Microbiology 71:357-361. https://doi.org/10.1023/A:1015875216095
  18. Kato F, K Chikako, O Ayako, I Takayuki, T Hiroshi, M Yohoji and H Sugiyama. 2000. Accumulation and subcellular localization of cesium in mycelia of streptomyces lividans and a Cs Tolerant Strain, Streptomyces sp. TOHO-2. J. Health. Sci. 46:259-262. https://doi.org/10.1248/jhs.46.259
  19. Kato S, E Goya, M Tanaka, W Kitagawa, Y Kikuchi, K Asano and Y Kamagata. 2016. Enrichment and isolation of flavobacterium strains with tolerance to high concentrations of cesium ion. Sci. Rep. 6:20041. https://doi.org/10.1038/srep20041
  20. Kuwahara C, A Fukumoto, M Nishina, H Sugiyama, Y Anzai and F Kato. 2011. Characteristics of cesium accumulation in the filamentous soil bacterium streptomyces sp. K202. J. Environ. Radioact. 102:138-144. https://doi.org/10.1016/j.jenvrad.2010.11.004
  21. Lee JH. 2016. Pp 020001. Status and prospect of NDT technology for nuclear energy industry in Korea. 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshp on Reliabilit of NDE. Korea.
  22. Lee YS, CH Cho, SH Lee, JG Kim and HS Lee. 2010. Uranium ingot casting method with uranium deposit in a pyroprocessing. J. Nucl. Fuel Cycle Waste Technol. 8:85-89.
  23. Linda DK, O Thomas and JM Santini. 2014. Isolation and identification of cobalt-and caesium-resistant bacteria from a nuclear fuel storage pond. FEMS Microbio. Lett. 359:81-84. https://doi.org/10.1111/1574-6968.12562
  24. Lovley DR, EJ Phillips, YA Gorby and ER Landa. 1991. Microbial reduction of uranium. Nature 350:413-416. https://doi.org/10.1038/350413a0
  25. Mosquera B, C Carvalho, R Veiga, L Mangia and R Anjos. 2006. $^{137}Cs$ distribution in tropical fruit trees after soil contamination. Environ. Exp. Bot. 55:273-281. https://doi.org/10.1016/j.envexpbot.2004.11.007
  26. Nishita H, A Wallace and E Romney. 1978. Radionuclide uptake by plants. California Univ., Los Angeles (USA). Lab of Nuclear Medicine and Radiation Biology.
  27. Pitman MA and A Sargood. 1990. Low level radioactive waste. Br. Med. J. 300:828-829. https://doi.org/10.1136/bmj.300.6728.828
  28. Roberts LE. 1990. Radioactive waste management. Annual Rev. Nucl. Sci. 40:79-112. https://doi.org/10.1146/annurev.ns.40.120190.000455
  29. Shim HW, YH Jin, SD Seo, SH Lee and DW Kim. 2010. Highly reversible lithium storage in bacillus subtilis-directed porous $Co_3O_4$ nanostructures. ACS Nano 5:443-449.
  30. Shim HW, AH Lim, KM Min and DW Kim. 2011. Synthesis of manganese oxide nanostructures using bacterial soft templates. CrystEngComm 13:6747-6752. https://doi.org/10.1039/c1ce05619k
  31. Shoda M, T Ohsumi and S Udaka. 1980. Screening for high phosphate accumulating bacteria. Agric. Biol. Chem. 44: 319-324.
  32. Strandberg G, S Shumate II, J Parrott Jr and S North. 1981. Microbial accumulation of uranium, radium, and cesium. NBS. Spec. Publ. 618:274-285.
  33. Sung SH, YY Jeong and KH Kim. 2008. Radwaste characteristics and disposal facility waste acceptance criteria. J. Nucl. Fuel Cycle Waste Technol. 6:347-356.
  34. Wang Xu, C Chen and J Wang. 2016. Bioremiediation of cesium-contaminated soil by sorghum bicolor and soil microbial community analysis. Geomicrobiol. J. 33:216-221. https://doi.org/10.1080/01490451.2015.1067655
  35. Williams LG. 1960. Uptake of $^{137}Cs$ by cells and detritus of euglena and chlorella. Limnol. Oceanogr. 5:301-311. https://doi.org/10.4319/lo.1960.5.3.0201