DOI QR코드

DOI QR Code

Analysis of Benthic Macroinvertebrate Community Structure and Stability in Major Inflow Streams of Lake Andong and Lake Imha

안동·임하호 주요 유입지천의 저서성 대형무척추동물 군집구조 및 군집안정성 분석

  • You, Hyuk (Department of Biological Science, Andong National University) ;
  • Lee, Mi Jin (Department of Biological Science, Andong National University) ;
  • Seo, Eul Won (Department of Biological Science, Andong National University) ;
  • Lee, Jong Eun (Department of Biological Science, Andong National University)
  • 유혁 (안동대학교 생명과학과) ;
  • 이미진 (안동대학교 생명과학과) ;
  • 서을원 (안동대학교 생명과학과) ;
  • 이종은 (안동대학교 생명과학과)
  • Received : 2016.11.14
  • Accepted : 2016.12.02
  • Published : 2016.12.31

Abstract

This study was conducted to provide important basic information about effective management of the marine environment at major inflow streams in Lake Andong and Lake Imha. The investigation was conducted 8 times from May, 2015 (AD1, AD2, IH1, IH2) to September, 2016 (AD3, AD4, IH3, IH4), and 8 surveyed sites were selected at Lake Andong (4 sites) and Lake Imha (4 sites). The inquiry identified 114 species, $59,913.7inds.\;m^{-2}$ in Lake Andong and 112 species, $39,038.4inds.\;m^{-2}$ in Lake Imha. The results indicate that the number of species and individuals in Lake Andong is more than that in Lake Imha, because Lake Andong has a variety of riparian vegetation and a richness of organic materials. Community analysis at Lake Imha revealed a dominant index of 0.57 (${\pm}0.18$), a diversity index of 2.87 (${\pm}0.31$), an evenness index of 0.73 (${\pm}0.04$), and a richness index of 4.17 (${\pm}0.71$). The results of functional feeding group analysis showed that a high proportion of species and individuals are gathering collectors. The results of functional habitat group analysis showed that a high proportion of species and individuals are clingers. The result of a physico-chemical water assay and dissolved oxygen and electric conductivity tests revealed that these measures increased when the water temperature decreased. The result of Pearson's correlation analysis by biological factors and physico-chemical factors showed that species and electric conductivity are highly correlated with one another. Major inflow streams of Lake Andong and Lake Imha were exposed to various point pollution sources and non-point pollution sources. This implies a necessity for continuous monitoring of the aquatic ecosystems in order to effect systematic water quality management of Lake Andong and Lake Imha.

안동호와 임하호 주요 유입수계의 저서성 대형무척추동물 군집구조 및 군집안정성을 파악하고자, 2015년부터 2016년까지 총 8회 조사를 실시하였다. 안동호 유입수계는 다양한 미소서식처가 조성되어 있고, 하상구조 또한 상대적으로 임하호 유입수계보다 다양하게 조성되어 있어 유수성 및 정수성 환경을 선호하는 분류군이 다수 출현하였다. 안동호는 깔따구류, 꼬마줄날도래 등 특정 종의 개체수 증가로 인해, 임하호에 비해 높은 우점도 및 낮은 다양도를 보였으며, 섭식기능군은 비교적 주워먹는무리의 종수 및 개체수 비율이 가장 높게 나타났고, 강우 등 환경요인에 의해 썰어먹는무리의 종수가 및 개체수가 감소한 것으로 나타났다. 서식기능군은 모든 지점에서 붙는무리의 종수 및 개체수 비율이 높게 나타났다. 군집안정성 분석 결과 안동호는 상대적 저항력과 회복력이 뛰어난 특성군 I 그룹에 속하는 종들의 출현율이 61.3%로 임하호 59.1%보다 높게 나타났고, 상대적 저항력과 회복력이 약하고 비교적 수환경이 안정적인 곳에서 서식하는 특성군 III 그룹에 속하는 종들의 출현율은 안동호에서 15.1%로, 임하호(20.5%)에 비해 낮게 나타났다. 이화학적 수질 분석 결과, 수온이 낮을수록 용존산소량은 높게 나타났고, pH와 전기전도도는 토양수분의 염류이온농도가 높아져 전반적으로 증가하는 경향을 나타냈다. 3차 조사시 강우에 의해 유입된 점 및 비점오염원의 영향으로 BOD와 SS는 감소, COD, T-P는 일시적으로 증가하는 경향을 보였다. 상관관계 분석 결과 전기전도도 및 T-N이 종수 및 개체수와 음의 상관관계를 나타내어, 하천 인근 유역의 점오염원과 비점오염원이 저서성 대형무척추동물의 군집과 수질에 부정적인 영향을 끼치는 것으로 나타났다. 따라서 수생생물에 직접적인 영향을 미치는 생활하수와 유기물의 유입을 차단하는 등 지속적인 관리 및 모니터링이 요구된다.

Keywords

References

  1. Bass D. 1992. Colonization and succession of benthic macroinvertebrates in Arcadia Lake, a South-Central USA reservoir. Hydrobiologia 242:123-131. https://doi.org/10.1007/BF00018068
  2. Baumgartner DM, K Mortl and O Rothhaupt. 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia 613:97-107. https://doi.org/10.1007/s10750-008-9475-0
  3. Bronmark C, J Hermanm, B Malmqvist, C Otto and P Sjostrom. 1984. Animal community structure as a function of stream size. Hydrobiologia 112:73-79. https://doi.org/10.1007/BF00007669
  4. Davis SD, SW Golladay, G Vellidis and CM Pringle. 2003. Macroinvertebrate biomonitoring in intermittent coastal plain stream impacted by animal agriculture. Jour. Env. Qual. 32:1036-1043. https://doi.org/10.2134/jeq2003.1036
  5. Edmunds GF, SL Jensen and L Berner. 1976. The mayflies of North and Central America. Univ. Minnesota Press, Minneapolis, 330.
  6. Forsyth DJ. 1978. Benthic macroinvertebrates in seven New Zealand lakes. Jour. Mar. Fre. Res. 12:41-49. https://doi.org/10.1080/00288330.1978.9515721
  7. Hynes HBN. 1963. Imported organic matter and secondary productivity in streams. Proc. 16th Int. Congr. Zool. 5:324-329.
  8. Jung KS. 2011. Odonata larvae of Korea. Eco & Nature, Seoul.
  9. Kehde PM and JL Wilhm. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Midl. Nat. 16:8-24.
  10. Kil HK, DG Kim, SW Jung, YH Jin, JM Hwang, KS Bae and YJ Bae. 2010. Impacts of impoundments by low-head and large dams on benthic macroinvertebrate communities in Koreans streams and rivers. Kor. Jour. Lim. 43:190-198.
  11. Kim LH, SY Lee and KS Min. 2008. The 21st sustainable environmental policies for protecting the water quality aquatic ecosystems. Kor. Wet. Soc. 10:53-66.
  12. Kwon OG, JS Lee and GM Park. 1993. primary color shellfish book in Korea. Academy books, Seoul.
  13. Lenat DR. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Jour. N. Am. Ben. Soc. 7:222-233.
  14. Margalef R. 1958. Information theory in ecology. Gen. Sys. 35:36-71.
  15. McNaughton SJ. 1967 Relationship among functional properties of California Grassland. Nature 216:168-169.
  16. Merritt RW and KW Cummins. 2008. An introduction to the aquatic insects of North America. 4th, Kendall Hunt Publ., Iowa.
  17. Ministry of Environment. 2006. The third all over the country natural environment guide. Seoul.
  18. Ministry of Environment. 2013. Waterquality pollution process exam standard. pp. 597.
  19. Morene P and M Callisto. 2006. Benthic macroinvertebrates in the water-shed of an urban reservoir in southeastern Brazil. Hydrobiologia 560:311-321. https://doi.org/10.1007/s10750-005-0869-y
  20. Nalepa TF, DJ Hartson, DL Fanslow, GA Land and SJ Lozano. 1998. Declines in benthic macroinvertebrate populations in southern Lake Michigan, 1980-1993. Can. J. Fish. Aquat. Sci. 55:2402-2413. https://doi.org/10.1139/f98-112
  21. Nalepa TF, GA Land and DL Fanslow. 2000. Trends in benthic macroinvertebrate populations in southern Lake Michigan. Inter. Ver. Theo. Ang. Lim. Verhan. 27:2540-2545.
  22. Petiz DG. 2003. Macroinvertebrate biomonitoring as an indicator of water quality: Status report for pipestone Creek. Pip. Nat. Mon. 13:1989-2002.
  23. Pielou EC. 1975. Ecological diversity. John Wiley, New York, 165.
  24. Ro TH and DJ Chun. 2004. Functional feeding group categorization of Korean immature aquatic insects and community stability analysis. Kor. Jour. Lim. 37:137-148.
  25. Shannon CE and W Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, 117.
  26. Sin HS, O Mitamura, SJ Kim and JK Choi. 2008. Characters of Musim stream by surveyed sites based on EPT-group of aquatic insects. Kor. Jour. Env. Ecol. 6:420-426.
  27. Song KL. 1995. Korea leech classification. Korea University, 57.
  28. Strayer D. 1983. The effects of surface geology and stream size on fresh water mussel distribution on south-eastern Michigan, USA. Fre. Biol. 13:253-264. https://doi.org/10.1111/j.1365-2427.1983.tb00675.x
  29. Weatherhead MA and MR James. 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia 462:115-129. https://doi.org/10.1023/A:1013178016080
  30. Won DH, SJ Kwon and YC Jeon. 2005. Aquatic insect of Korea. Korea ecosystem service press, Seoul.
  31. Yoon IB. 1995. Explanatory diagram of aquatic insects. Junghaengsa, Seoul.