DOI QR코드

DOI QR Code

제2형 당뇨 모델 db/db 마우스에서 4개월의 자화수 섭취 후 혈당, 항산화 상태 및 세포 DNA 손상 개선 효과

Four months of magnetized water supplementation improves glycemic control, antioxidant status, and cellualr DNA damage in db/db mice

  • 이혜진 (한남대학교 대덕밸리캠퍼스 생명나노과학대학 식품영양학과) ;
  • 강명희 (한남대학교 대덕밸리캠퍼스 생명나노과학대학 식품영양학과)
  • Lee, Hye-Jin (Department of Food & Nutrition, Daedeok Valley Campus, Hannam University) ;
  • Kang, Myung-Hee (Department of Food & Nutrition, Daedeok Valley Campus, Hannam University)
  • 투고 : 2016.11.17
  • 심사 : 2016.12.15
  • 발행 : 2016.12.31

초록

자화수는 가격이 비싸지 않고 쉽게 만들 수 있으며 환경 친화적인 음용수임에도 불구하고 자화수 섭취의 건강상의 유익에 관해서는 과학적인 문헌이 매우 제한적이다. 본 연구는 유전적 소인에 의해 제2형 당뇨병이 발현되는 모델인 db/db 마우스 6주령 14마리를 당뇨군과 자화수군으로 나누어 각 7마리씩 배치하고, 이형접합체 마우스 10마리를 대조군으로 하여 총 3군으로 나누어 16주 동안 자화수를 투여하였다. 혈당 강하 효과를 보기 위해 공복혈당, 인슐린 농도, 내당능 검사, 당화 헤모글로빈을 측정 하였고, DNA 손상 감소 효과, 항산화 상태를 알아보았다. 당뇨군과 자화수군의 혈당치는 대조군에 비해 유의적으로 높았으며, 당뇨군의 혈당은 자화수 섭취 16주까지 높게 지속되었으나 자화수군의 혈당은 섭취 10주 후부터 유의적으로 감소하였다. 혈중 당화헤모글로빈 함량도 마찬가지로 대조군보다 당뇨군에서 증가하였고 자화수군에서는 유의적으로 감소하였으나 경구 당부하 검사 결과, 혈당 곡선하면적 (area under the curve, AUC)은 당뇨군과 자화수 투여군 사이에 유의적인 차이를 보이지 않았다. 당뇨쥐의 DNA 손상 정도는 세 가지 지표 (DNA in tail, tail length, tail moment) 모두 자화수군이 당뇨군에 비해 유의적으로 감소하였으며 이러한 효과는 혈액과 간에서 모두 나타났다. 적혈구 항산화 효소인 SOD, GSH-Px glutathione peroxidase 활성도는 대조군, 당뇨군, 자화수군 간에 차이를 보이지 않았고, 혈장 총항산화능인 TRAP 수준도 자화수 섭취로 인한 차이를 볼 수 없었다. 결론적으로 자화수 투여가 db/db mouse를 사용한 제2형 당뇨의 혈당 강하를 포함한 glycemic control에 유리한 개선효과를 보일 뿐 아니라 혈액과 간의 DNA 손상 감소효과까지 보임을 확인하였다. 그러나 그 기전에 대해서는 확실하게 규명하지 못하였으므로 앞으로 자화 수음용 효과를 뒷받침할 더욱 깊고 다양한 기전 연구가 수행되어야 할 것이다.

Purpose: Water is magnetically charged upon contact with a magnet. Although magnetic water products have been promoted since the 1930's, they have not received wide acceptance since their effectiveness is still in question; however, some have reported their therapeutic effects on the body, especially the digestive, nervous, and urinary systems. Methods: In this study, the effect of magnetized water on glycemic control of 14 diabetic mice (CB57BK/KsJ-db/db) in comparison with 10 control mice (CB57BK/KsJ-db/+(db/+)) was investigated. Seven diabetic control (DMC) mice and seven diabetic mice + magnetized water (DM+MW) were kept for 16 weeks, followed by intraperitoneal glucose tolerance test (IPGTT). Weekly blood glucose was measured from tail veins. Blood obtained from heart puncture was used for HbA1c analysis. Results: Blood glucose level showed a significant difference starting from the $10^{th}$ week of study ($496.1{\pm}10.2mg/dl$ in DMC vs. $437.9{\pm}76.9mg/dl$ in DM+MW). Blood glucose followed by IPGTT showed no significant difference between groups at 0, 30, 60, 90, and 120 min, although glucose level at 180 min was significantly reduced in DM+MW mice. Plasma insulin level in DM+MW groups was only 39.5% of that of DMC groups ($5.97{\pm}1.69ng/ml$ in DMC vs. $2.36{\pm}0.94ng/ml$ in DM+MW). Levels of HbA1c were 12.4% and 9.7% in DMC and DM+MW groups, respectively. Conclusion: These results show the promising therapeutic effect of magnetized water in regulating blood glucose homeostasis; however, long-term supplementation or mechanistic study is necessary.

키워드

참고문헌

  1. Korean Diabetes Association; Korean Diabetes Research Foundation. Diabetes fact sheet in Korea 2016. Seoul: Korean Diabetes Association; 2016.
  2. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet 1996; 347(8999): 444-445. https://doi.org/10.1016/S0140-6736(96)90013-6
  3. Lee HJ, Kang MH. Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats. Nutr Res Pract 2013; 7(1): 34-42. https://doi.org/10.4162/nrp.2013.7.1.34
  4. Park JH, Sung KS, Kim SS, Shim GS, Han CK. Effects of puffed and fermented red ginseng on blood glucose-related biomarkers in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 2012; 41(5): 630-637. https://doi.org/10.3746/jkfn.2012.41.5.630
  5. Mozaffari MS, Baban B, Abdelsayed R, Liu JY, Wimborne H, Rodriguez N, Abebe W. Renal and glycemic effects of high-dose chromium picolinate in db/db mice: assessment of DNA damage. J Nutr Biochem 2012; 23(8): 977-985. https://doi.org/10.1016/j.jnutbio.2011.05.004
  6. Shirpoor A, Ansari MH, Salami S, Pakdel FG, Rasmi Y. Effect of vitamin E on oxidative stress status in small intestine of diabetic rat. World J Gastroenterol 2007; 13(32): 4340-4344. https://doi.org/10.3748/wjg.v13.i32.4340
  7. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic ${\beta}$ cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the calcium and vitamin D for diabetes mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 2011; 94(2): 486-494. https://doi.org/10.3945/ajcn.111.011684
  8. Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 2003; 22(4): 316-321. https://doi.org/10.1080/07315724.2003.10719310
  9. Lee CH, Kim J, Kwon J, Youn Y, Kim YS. Instant gruel from colored barley and oats for improving diabetic conditions. J Korean Soc Food Sci Nutr 2013; 42(6): 885-891. https://doi.org/10.3746/jkfn.2013.42.6.885
  10. Lee SJ, Shin JH, Ju JC, Kang SK, Sung NJ. Hypoglycemic and hypolipidemic effects of orostachys japonicus with medicinal herbs in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 2013; 42(4): 587-594. https://doi.org/10.3746/jkfn.2013.42.4.587
  11. Lee BR, Koh KO, Park PS. Antihyperglycemic effects of green tea extract on alloxan-induced diabetic and OLETF rats. Korean Soc Food Sci Nutr 2007; 36(6): 696-702. https://doi.org/10.3746/jkfn.2007.36.6.696
  12. Hininger-Favier I, Benaraba R, Coves S, Anderson RA, Roussel AM. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J Am Coll Nutr 2009; 28(4): 355-361. https://doi.org/10.1080/07315724.2009.10718097
  13. Coey JM, Cass S. Magnetic water treatment. J Magn Magn Mater 2000; 209: 71-74. https://doi.org/10.1016/S0304-8853(99)00648-4
  14. Johnson KE, Sanders JJ, Gellin RG, Palesch YY. The effectiveness of a magnetized water oral irrigator (Hydro Floss) on plaque, calculus and gingival health. J Clin Periodontol 1998; 25(4): 316-321. https://doi.org/10.1111/j.1600-051X.1998.tb02447.x
  15. Ma YL, Ren H, Ren S, Zhen EK, Hao G, Zhao YW. A study of the effect of magnetized water on enzyme activities by potentiometric enzyme electrode method. J Tongji Med Univ 1992; 12(4): 193-196. https://doi.org/10.1007/BF02887847
  16. Zhang YS, Wu HW. Effect of magnetic water on urinary calculi-- an experimental and clinical study. Z Urol Nephrol 1987; 80(9): 517-523.
  17. Zhang YS, Wu HW. Effect of magnetized water on urinary calculi: an experimental and clinical study. Acta Acad Med Wuhan 1984; 4(1): 31-37. https://doi.org/10.1007/BF02856947
  18. Hafizi L, Gholizadeh M, Karimi M, Hosseini G, Mostafavi- Toroghi H, Haddadi M, Rezaiean A, Ebrahimi M, Emami Meibodi N. Effects of magnetized water on ovary, pre-implantation stage endometrial and fallopian tube epithelial cells in mice. Iran J Reprod Med 2014; 12(4): 243-248.
  19. Iorio R, Delle Monache S, Bennato F, Di Bartolomeo C, Scrimaglio R, Cinque B, Colonna RC. Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics 2011; 32(1): 15-27. https://doi.org/10.1002/bem.20602
  20. Lee HJ, Jo HR, Jeon EJ, Kang MH. Effect of the Magnetized water supplementation on lymphocyte DNA damage in mice treated with diethylnitrosamine. Korean J Nutr 2010; 43(6): 570-577. https://doi.org/10.4163/kjn.2010.43.6.570
  21. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175(1): 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  22. Pitozzi V, Giovannelli L, Bardini G, Rotella CM, Dolara P. Oxidative DNA damage in peripheral blood cells in type 2 diabetes mellitus: higher vulnerability of polymorphonuclear leukocytes. Mutat Res 2003; 529(1-2): 129-133. https://doi.org/10.1016/S0027-5107(03)00114-3
  23. Dincer Y, Akcay T, Alademir Z, Ilkova H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 2002; 505(1-2): 75-81. https://doi.org/10.1016/S0027-5107(02)00143-4
  24. Xu YB, Sun SY. Effect of stable weak magnetic field on Cr(VI) bio-removal in anaerobic SBR system. Biodegradation 2008; 19(3): 455-462. https://doi.org/10.1007/s10532-007-9151-5
  25. Gonet B. Influence of constant magnetic fields on certain physiochemical properties of water. Bioelectromagnetics 1985; 6(2): 169-175. https://doi.org/10.1002/bem.2250060208
  26. Liboff AR, Cherng S, Jenrow KA, Bull A. Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 microT magnetostatic fields. Bioelectromagnetics 2003; 24(1): 32-38. https://doi.org/10.1002/bem.10063
  27. Kim MJ, Jung KH, Uhm YK, Leem KH, Kim HK. Preservative effect of electrolyzed reduced water on pancreatic beta-cell mass in diabetic db/db mice. Biol Pharm Bull 2007; 30(2): 234-236. https://doi.org/10.1248/bpb.30.234
  28. Lazalde-Ramos BP, Zamora-Perez AL, Sosa-Macias M, Guerrero- Velazquez C, Zuniga-Gonzalez GM. DNA and oxidative damages decrease after ingestion of folic acid in patients with type 2 diabetes. Arch Med Res 2012; 43(6): 476-481. https://doi.org/10.1016/j.arcmed.2012.08.013
  29. Lodovici M, Giovannelli L, Pitozzi V, Bigagli E, Bardini G, Rotella CM. Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat Res 2008; 638(1-2): 98-102. https://doi.org/10.1016/j.mrfmmm.2007.09.002
  30. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 2012; 10(1): 49-79. https://doi.org/10.1186/1477-7827-10-49
  31. Naher ZU, Ali M, Biswas SK, Mollah FH, Fatima P, Hossain MM, Arslan MI. Effect of oxidative stress in male infertility. Mymensingh Med J 2013; 22(1): 136-142.
  32. Sueda M, Katsuki A, Nonomura M, Kobayashi R, Tanimoto Y. Effects of high magnetic field on water surface phenomena. J Phys Chem C Nanomater Interfaces 2007; 111(39): 14389-14393. https://doi.org/10.1021/jp072713a
  33. Cho YI, Lee SH. Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers. Int Commun Heat Mass Transf 2005; 32(1-2): 1-9. https://doi.org/10.1016/j.icheatmasstransfer.2004.03.019
  34. Nakagawa J, Hirota N, Kitazawa K, Shoda M. Magnetic field enhancement of water vaporization. J Appl Phys 1999; 86(5): 2923-2925. https://doi.org/10.1063/1.371144
  35. Wang D, Cheng X, Yan X. Effect of magnetized liquor on free radical metabolism in the heart of mice. Chin J Med Phys 2002; 19(4): 243-244.
  36. Raymond-Whish S, Mayer LP, O'Neal T, Martinez A, Sellers MA, Christian PJ, Marion SL, Begay C, Propper CR, Hoyer PB, Dyer CA. Drinking water with uranium below the U.S. EPA water standard causes estrogen receptor-dependent responses in female mice. Environ Health Perspect 2007; 115(12): 1711-1716. https://doi.org/10.1289/ehp.9910
  37. Shah D, Nagarajan N. Luteal insufficiency in first trimester. Indian J Endocrinol Metab 2013; 17(1): 44-49. https://doi.org/10.4103/2230-8210.107834
  38. Lu J, Mao Y, Yang Y, Wang Y, Shi Y, Zhou O. Influence of magnetized water on the experimental hyperlipemia and atherosclerosis in rabbits. Shanghai Lab Anim Sci 2000; 20: 45-51.
  39. Hafizi L, Sazgarnia A, Mousavifar N, Karimi M, Ghorbani S, Kazemi MR, Emami Meibodi N, Hosseini G, Mostafavi Toroghi H. The effect of extremely low frequency pulsed electromagnetic field on in vitro fertilization success rate in NMRI mice. Cell J 2014; 15(4): 310-315.