DOI QR코드

DOI QR Code

Comparative study on the osseointegration of implants in dog mandibles according to the implant surface treatment

  • Yoon, Wook-Jae (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University) ;
  • Kim, Su-Gwan (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University) ;
  • Oh, Ji-Su (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University) ;
  • You, Jae-Seek (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University) ;
  • Jeong, Kyung-In (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Konyang University Hospital) ;
  • Lim, Sung-Chul (Department of Pathology, School of Medicine, Chosun University) ;
  • Jeong, Mi-Ae (Department of Dental Hygiene, Kangwon National University)
  • Received : 2015.11.02
  • Accepted : 2016.02.26
  • Published : 2016.12.31

Abstract

Objectives: This study compared the impact of implant surface treatment on the stability and osseointegration of implants in dog mandibles. Materials and Methods: Six adult dogs received a total of 48 implants that were prepared using four different surface treatments; resorbable blast media (RBM), hydroxyapatite (HA), hydrothermal-treated HA, and sand blasting and acid etching (SLA). Implants were installed, and dogs were separated into 2- and 4-week groups. Implant stability was evaluated via Periotest M, Osstell Mentor, and removal torque analyzers. A histomorphometric analysis was also performed. Results: The stability evaluation showed that all groups generally had satisfactory values. The histomorphometric evaluation via a light microscope revealed that the HA surface implant group had the highest ratio of new bone formation on the entire fixture. The hydrothermal-treated HA surface implant group showed a high ratio of bone-to-implant contact in the upper half of the implant area. Conclusion: The hydrothermal-treated HA implant improved the bone-to-implant contact ratio on the upper fixture, which increased the implant stability.

Keywords

References

  1. Mueller CK, Thorwarth M, Schmidt M, Schlegel KA, Schultze-Mosgau S. Comparative analysis of osseointegration of titanium implants with acid-etched surfaces and different biomolecular coatings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:726-36. https://doi.org/10.1016/j.tripleo.2011.01.004
  2. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010;21:129-36. https://doi.org/10.1111/j.1600-0501.2009.01800.x
  3. de Vicente JC, Recio O, Martin-Villa L, Junquera LM, Lopez-Arranz JS. Histomorphometric evaluation of guided bone regeneration around implants with SLA surface: an experimental study in beagle dogs. Int J Oral Maxillofac Surg 2006;35:1047-53. https://doi.org/10.1016/j.ijom.2006.06.008
  4. Albrektsson T, Brånemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a longlasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  5. Brånemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  6. Shalabi MM, Gortemaker A, Van't Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res 2006;85:496-500. https://doi.org/10.1177/154405910608500603
  7. Thompson JI, Gregson PJ, Revell PA. Analysis of push-out test data based on interfacial fracture energy. J Mater Sci Mater Med 1999;10:863-8. https://doi.org/10.1023/A:1008929201918
  8. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
  9. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  10. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  11. Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
  12. Jeong R, Marin C, Granato R, Suzuki M, Gil JN, Granjeiro JM, et al. Early bone healing around implant surfaces treated with variations in the resorbable blasting media method. A study in rabbits. Med Oral Patol Oral Cir Bucal 2010;15:e119-25.
  13. Meredith N, Book K, Friberg B, Jemt T, Sennerby L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin Oral Implants Res 1997;8:226-33. https://doi.org/10.1034/j.1600-0501.1997.080309.x
  14. Ratner BD, Porter SC. Surfaces in biology and biomaterials: description and characterization. In: Brash JL, Wojciechowski PW, eds. Interfacial phenomena and bioproducts. New York: Marcel Dekker; 1996:57-83.
  15. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932-49.
  16. Schwarz ML, Kowarsch M, Rose S, Becker K, Lenz T, Jani L. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J Biomed Mater Res A 2009;89:667-78.
  17. Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants 1990;5: 390-400.
  18. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 2009;88:579-96.
  19. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002;28:2-8. https://doi.org/10.1563/1548-1336(2002)028<0002:BRTMAR>2.3.CO;2
  20. Granato R, Marin C, Suzuki M, Gil JN, Janal MN, Coelho PG. Biomechanical and histomorphometric evaluation of a thin ion beam bioceramic deposition on plateau root form implants: an experimental study in dogs. J Biomed Mater Res B Appl Biomater 2009;90:396-403.
  21. Yang GL, He FM, Yang XF, Wang XX, Zhao SF. Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:516-24. https://doi.org/10.1016/j.tripleo.2008.03.017
  22. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  23. Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg 1987;45:601-7. https://doi.org/10.1016/0278-2391(87)90270-9
  24. Jones JD, Lupori J, Van Sickels JE, Gardner W. A 5-year comparison of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:649-52. https://doi.org/10.1016/S1079-2104(99)70154-X
  25. Cook SD, Baffes GC, Palafox AJ, Wolfe MW, Burgess A. Torsional stability of HA-coated and grit-blasted titanium dental implants. J Oral Implantol 1992;18:354-65.
  26. Radin SR, Ducheyne P. Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. J Mater Sci Mater Med 1992;3:33-42. https://doi.org/10.1007/BF00702942
  27. Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:782-9. https://doi.org/10.1016/j.tripleo.2008.12.023
  28. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071-9. https://doi.org/10.1002/jbm.820290907
  29. Braceras I, Alava JI, Goikoetxea L, de Maeztu MA, Onate JI. Interaction of engineered surfaces with the living world: ion implantation vs. osseointegration. Surf Coat Technol 2007;201:8091-8. https://doi.org/10.1016/j.surfcoat.2006.03.052
  30. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 2004;25:1003-10. https://doi.org/10.1016/S0142-9612(03)00626-4
  31. De Maeztu MA, Braceras I, Alava JI, Gay-Escoda C. Improvement of osseointegration of titanium dental implant surfaces modified with CO ions: a comparative histomorphometric study in beagle dogs. Int J Oral Maxillofac Surg 2008;37:441-7. https://doi.org/10.1016/j.ijom.2008.01.010

Cited by

  1. Long-term evaluation of the prognosis of straight and tapered implant with resorbable blast media surface: Retrospective clinical study vol.43, pp.1, 2016, https://doi.org/10.21851/obr.43.01.201903.23
  2. The Role of Etching Surface Treatment of Ti6Al4V Alloys on Hydroxyapatite Coating on Substrate Surfaces by Electrophoretic Coating Method vol.988, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/msf.988.200
  3. Influence of Three Dental Implant Surfaces on Cell Viability and Bone Behavior. An In Vitro and a Histometric Study in a Rabbit Model vol.10, pp.14, 2020, https://doi.org/10.3390/app10144790
  4. Effects of fluid shear stress on expression of focal adhesion kinase in MG-63 human osteoblast-like cells on different surface modification of titanium vol.12, pp.1, 2016, https://doi.org/10.1080/21655979.2021.1962686
  5. Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs vol.14, pp.20, 2016, https://doi.org/10.3390/ma14206217