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INTRODUCTION

Cystic echinococcosis (CE) is a parasitic infection caused by 
the larval stage of the dog tapeworm Echinococcus granulosus. It 
is found in the small intestines of carnivores, and the eggs are 
passed via fecal matter. CE has been identified as an important 
economic and public health concern in developing countries 
[1]. Humans and domestic livestock can be intermediate 
hosts, in which the worms form hydatid cysts in various or-
gans [2]. Differentiation into either a strobilated cestode in the 
dog intestine or a hydatid cyst in visceral or non-intestinal sites 
of intermediate hosts is one of the unique properties of E. 

granulosus. This phenomenon indicates unexpected biological 
features of the worm and presents a special field of study to in-
vestigate the basic issues in Platyhelminthes differentiation [3]. 

Studies on the in vitro cultivation of Echinococcus species 
show that the parasite is a suitable model for differentiation. 

Depending on the culture conditions, protoscoleces can either 
develop in cystic or adult directions. Several investigations 
have reported that controlling the capacity of protoscoleces 
into adult worms or hydatid cysts is associated with the host’s 
environmental conditions such as the contact of evaginated 
protoscoleces with a suitable protein-containing substrate [3-
5]. In addition to the influence of environmental conditions 
such as pH, oxygen tensions, and bile salt concentration, the 
molecular basis of bidirectional development needs to be in-
vestigated. Whole-genome sequencing, proteomic and tran-
scriptional investigations have identified genes and proteins 
that are differentially expressed between the different life stages 
and cyst components of E. granulosus [6-8]. However, the iden-
tities of some genes responsible for the main molecular events 
that lead to structural developments of E. granulosus and its 
evolution between various developmental stages are unknown.

The Homeobox B7 (HoxB7) gene family has emerged as im-
portant master regulators of development. They are present in 
the genomes of all animals, have been highly conserved 
throughout evolution, and are directly involved in the mor-
phological diversification [9,10]. Notch signalling pathway is 
found in organisms as diverse as worms and humans. The 
notch gene plays a critical role in tissue development, regula-
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Abstract: This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different develop-
mental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all develop-
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3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. 
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tion of cell proliferation, and differentiation and cell fate in all 
metazoans [11,12]. However, there are no molecular develop-
mental studies on HoxB7 and notch genes in E. granulosus. The 
purpose of the present study was to evaluate the differential 
expression of these genes in terms of fold differences in the 
germinal layer of hydatid cyst in sheep as an intermediate host 
and the microcysts grown in monophasic culture media. 

MATERIALS AND METHODS

Collection of protoscoleces 
The protoscoleces of hydatid cysts were obtained from the 

livers of naturally infected sheep slaughtered at Kerman abat-
toir, southeast of Iran. The hydatid fluid was aspirated asepti-
cally using a 50 ml syringe, and then the germinal layer was re-
moved. The layer was washed 4 times and stored at -80˚C until 
testing. Subsequently, the collected protoscoleces were washed 
4 times with sterile PBS. The number of protoscoleces per ml 
was adjusted as 1× 104 protoscoleces in 0.9% NaCl solution 
with more than 90% viability rate. The viability of the proto-
scoleces was confirmed by their flame cell motility and imper-
meability to 0.1% eosin solution under a light microscope. Af-
terwards, the parasite was genotyped as described elsewhere 
[4,13-15]. The protoscoleces were digested in 1% (w/v) pepsin 
prepared in 0.85% (w/v) NaCl (pH 4.0) for 30 min at 37˚C to 
release protoscoleces from the brood capsules. Lastly, pepsin-
digested protoscoleces were used for 3 assays; (i) in vitro cul-
ture in diphasic media to reach adult form, (ii) in vitro culture 
with feeder cells for microcyst formation, and (iii) in vivo adult 
worm formation by experimental infection of a dog.

In vitro cultivation of protoscoleces in diphasic medium
In vitro cultivation of protoscoleces into E. granulosus adult 

worm in diphasic medium was carried out as described by 
Smyth et al. [16] with some modifications. The culture medi-
um was S.10E.H, which consisted of 2 phases: (1) liquid phase 
containing 260 ml CMRL 1066 medium (Thermo Fisher Sci-
entific, San Jose, California, USA), 100 ml heat inactivated fetal 
calf serum (FCS; Gibco-BRL, Gaithersburg, Maryland, USA), 
36 ml 5% yeast extract (Sigma-Aldrich, St. Louis, Missouri, 
USA) in CMRL 1066, 5.6 ml 30% glucose (Sigma-Aldrich) in 
distilled water, 1.4 ml 5% dog bile in PBS, 20 mM HEPES 
(Sigma-Aldrich), 10 mM NaHCO3 (Sigma-Aldrich) supple-
mented with penicillin (100 IU/ml), streptomycin (100 mg/
ml) (Sigma-Aldrich), and (2) bovine serum coagulated at 76˚C 

for 20-30 min as a solid phase [4,5,17]. Different stages in cul-
ture medium were isolated based on the morphological classi-
fication described by Smyth et al. [16]. The isolated stages were 
stored in RNAlater (QIAGEN GmbH, Hilden, Germany) at 
-80˚C until RNA extraction. 

In vitro cultivation of protoscoleces in monophasic 
medium

To reach E. granulosus microcysts, protoscoleces were washed 
3 times in Hanks Balanced Salt Solution (HBSS) and added to 
Dulbecco’s minimal essential medium (DMEM) (Thermo 
Fisher Scientific) containing 2 mM glutamine (Sigma-Aldrich), 
penicillin (100 IU/ml), and streptomycin (100 mg/ml) supple-
mented with 10% heat inactivated FCS. For feeding the proto-
scoleces during subsequent passages, 1× 106 Hepa 1-6 (ATCC® 
CRL-1830™) was added to each 200 ml flask. The flasks contain-
ing the protoscoleces were placed in an upright position in an 
incubator at 37˚C with 5% CO2, and the medium was changed 
every 4 to 8 days [13,18].

Experimental infection in a dog
This study was conducted with approval from the Research 

Ethical Review Committee of Kerman University of Medical 
Sciences (permit no. 92/274). To establish the experimental 
infection in a dog, a healthy male mixed-breed dog (6 months 
old) was obtained from a supplier in Kerman city, Kerman 
Province, Iran. The animal was treated with praziquantel (10 
mg/kg body weight) prior to the study commencement and 
kept in an individual cage to adapt to the living condition and 
diet. The dog was fed commercial dog food and water ad libi-
tum. After anthelmintic treatment and subsequent microscop-
ic stool examination verifying the negative coprological find-
ings, the dog received approximately 10,000 viable protoscole-
ces of E. granulosus orally with a meal, and all subsequent food 
(administration once daily) was previously heat inactivated 
[19,20].

The dog was euthanized by intravenous barbiturate over-
dose (Thiopental Nesdonal® Biochemie GmbH, Vienna, Aus-
tria) 45 days after the infection and necropsied to isolate E. 

granulosus adult worms. The small intestine of the dog was 
opened longitudinally, and the sections were immersed in 
warm saline. Detached worms and intestinal contents were 
passed through sieves. The collected worms were washed 3 
times with sterile PBS and kept in RNAlater at -80˚C until test-
ing [20]. 
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Analysis of mRNA expression by real-time qPCR
Total RNAs were isolated from the following parasites at dif-

ferent developmental stages in culture media: [A] evaginated 
protoscoleces (up to 1 day post cultivation), [B] juvenile 
worms with excretory canals and bladder formation (5-7 
days), [C] juvenile worms with first proglottid formation (18-
22 days), [D] juvenile worms with second proglottid forma-
tion (26-32 days), [E] juvenile worms with testes and genital 
pore appearance (34-36 days), [F] juvenile worms with 3 or 
more proglottid formation prior to embryonated egg produc-
tion in diphasic culture medium, and [G] microcysts in mono-
phasic culture medium. In addition, total RNAs were extracted 
from the following ex vivo stages: [H] invaginated protoscole-
ces, [I] germinal layer of hydatid cyst from infected sheep, and 
[J] adult worms isolated from the experimentally infected dog. 
Total RNAs from various stages were isolated using the RNeasy 
mini kit (QIAGEN GmbH) and the contaminating genomic 
DNA was removed from the RNA samples with DNaseI in a 
column digestion according to the manufacturer’s protocol. 
The quantity and quality of the RNA samples were assessed 
using the NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, Delaware, USA). Samples with 
concentrations > 100 ng/µl, A260/A280 ratio between 1.8-2.0 
and A260/A230 ratio of 1.7-2.0 were retained.

Total RNA (1 µg) was used to synthesize the first cDNA 
strand for each sample using the Omniscript® Reverse Tran-
scriptase kit (QIAGEN GmbH) with random primers (Sigma-
Aldrich) and a final volume of 20 µl. The final cDNA products 
were diluted 50 times with nuclease free water before qPCR.

Gene sequences obtained from the EMBL and GenBank data-
bases were used to design specific primers for HoxB7 (EUB63018) 
and Notch (CDJ25139): HoxB7 (EgHoxB7_F GCGAACGCATCT-
GCGGG and EgHoxB7_R TTCTTCACCTTCATTGGAGG) and 
Notch (Egnotch_F: TCTGTCTACGGTGACGGTG and Egnotch_R: 
ACAGCACGGAGAAGGTCTG). The amplicon size was 237 and 
215 bp, respectively.

Relative quantitation using SYBR green PCR Master Mix 
(QIAGEN GmbH) using 7.5 µl of diluted cDNA (1:50) as 
template per 15 µl reaction was performed using the Rotor-
Gene Q (QIAGEN GmbH) as per the manufacturer’s instruc-
tions. The reaction conditions were initial activation at 94˚C 
for 15 min, 45 cycles of denaturation at 94˚C for 10 sec, an-
nealing at 58˚C for 15 sec, and extension at 72˚C for 35 sec for 
each primer pair. The point of quantification was adjusted ac-
cording to the melting curves of each primer pair. A dissocia-

tion step from 50˚C to 94˚C with ramping increments of 0.1˚C/
sec was added to assess the amplification specificity for each 
product through melting curve analyses. To determine the PCR 
amplification efficiency for each gene, standard cDNA dilu-
tions were prepared using 5 two-fold serial dilutions. PCR re-
sults were normalized to the levels of TATA-Box binding pro-
tein (TBP), elongation factor 1 alpha (EF-1a), and cyclophilin 
(CYP-1) as reference genes [21]. The expression of all the se-
lected developmental genes was evaluated using ΔΔCT meth-
od. There were 4 technical replicates per biological stage for 
each gene. For each run, a reverse transcription negative con-
trol (without reverse transcriptase) for each synthesized cDNA 
and a non-template negative control were included to confirm 
the absence of DNA contamination.

Statistical analysis
Data analysis was conducted by SPSS statistical package, ver-

sion 17.0 (SPSS Inc., Chicago, Illinois, USA). One-way ANOVA 
test was used to assess the differences between the relative 
quantities of each gene. In addition, P < 0.05 was considered 
statistically significant. 

RESULTS 

Genetic characterization
The results of partial amplification of cox1 segment showed 

a product size of 366 bp. Nucleotide sequences were aligned 
with the reference sequences of each genotype within E. granu-

losus retrieved from GenBank. The findings of sequence analy-
sis of the collected protoscoleces demonstrated the presence of 
E. granulosus sensu stricto (G1 genotype). 

In vitro cultttivation and in vivo development of adult 
worm

The different stages of E. granulosus in diphasic culture me-
dium were observed as follows: intact protoscoleces (Fig. 1A), 
evaginated protoscoleces (Fig. 1B), excretory canal and bladder 
formation (Fig. 1C), first proglottid formation (Fig. 1D), sec-
ond proglottid formation and testes and genital pore appear-
ance (Fig. 1E), and 3 or more proglottids formation (Fig. 1F). 
Parasite microcysts developed in monophasic culture medium 
after 45 days, which is depicted in Fig. 1G. The mature adult 
worms of E. granulosus with 3 proglottids were isolated from 
the small intestine of experimentally infected dogs 45 days 
post infection (data not shown).
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Notch gene 
The results showed that notch gene was expressed at all de-

velopmental stages of E. granulosus (Fig. 2). Nevertheless, the 
level of expression was significantly upregulated at vesicle 
(31.3-fold) and germinal layer (86.4-fold) stages in compari-
son with the other stages (P < 0.001).

HoxB7 gene
The expression of HoxB7 gene was observed at all develop-

mental stages of E. granulosus (Fig. 2). The level of expression 

was significantly upregulated 9.0-fold in 3 or more proglottids 
formation (P < 0.05), 9.4-fold in germinal layer (P < 0.05) and 
82.5-fold in adult worm stages (P < 0.001). 

DISCUSSION 

In vitro cultivation of E. granulosus has been undertaken for 
last few decades in order to study the developmental biology, 
differentiation, and host-parasite relationships [3,5]. In this 
study, we obtained different developmental stages of E. granu-

losus in biphasic and monophasic culture media (Fig. 1). 
Moreover, we established the experimental infection in dogs 
to reach the fertile adult worm. The differential expression of 
HoxB7 and notch genes were evaluated at different develop-
mental stages (in vivo and in vitro) of the parasite, including 7 
in vitro stages of strobilization and microcysts formation as 

Fig. 1. In vitro developmental stages of Echinococcus granulosus 
in Biphasic (A-F) and monophasic (G) culture media. (A) Intact 
protoscolex. (B) Evaginated protoscolex. (C) Excretory canals and 
bladder formation. (D) First proglottid formation. (E) Second pro-
glottid formation. (F) Third or more proglottid formation. (G) Micro-
cyst cultivated in vitro.
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Fig. 2. Expression of Notch and HoxB7 genes in developmental 
stages of E. granulosus in vitro and in vivo. (A) Evaginated proto-
scoleces. (B) Excretory-canal-and-bladder-formation. (C) First-
proglottid-formation. (D) Second proglottid-formation. (E) Testes-
and-genital-pore-appearance. (F) Third-or-more-proglottid. (G) 
Microcysts in monophasic media. (H) Intact protoscoleces. (I) 
Germinal layer of hydatid cyst. (J) Adult worms isolated from a 
dog. *statistically significant (P<0.05).
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well as 3 ex vivo stages, including intact protoscoleces, germi-
nal layer, and the adult worm in the experimentally infected 
dog.

The HOX subgroup of the homeobox supergene family con-
sists of several genes that encode transcription factors with the 
capacity to activate or repress downstream target gene expres-
sion. HOX genes also regulate growth and differentiation dur-
ing embryonic development and maintain adult tissue ho-
meostasis. In addition, the Hox family, which is characterized 
by its highly conserved DNA binding domain, has been iden-
tified in almost all metazoans. This gene family is considered 
important in the study of developmental biology [9,10]. 
HoxB7, a member of the HOX family, encodes a protein with a 
homeobox DNA-binding domain and functions as a se-
quence-specific transcription factor [22,23]. HoxB7 participates 
in processes such as cell proliferation and differentiation and 
anterior/posterior pattern formation [24]. Hox genes are in-
volved in body segment identity in the fruit fly Drosophila me-

lanogaster [25]. Hox genes were originally identified as key reg-
ulators of body segment of invertebrates. Moreover, an impor-
tant role of HoxB7 is its involvement with morphological di-
versification of various body structures during development 
[26]. 

The presence of Hox gene family members has been investi-
gated in a number of parasitic tapeworms (e.g. Taenia asiatica, 
Hymenolepis microstoma, Mesocestoides corti, and Echinococcus 
multilocularis) as well as free-living flatworms (e.g. Schmidtea 
mediterranea) [27-30]. In the present study, all developmental 
stages of E. granulosus showed some degree of HoxB7 expres-
sion. Our findings revealed the overexpression of HoxB7 gene 
in 3 or more proglottids, the germinal layer and the adult 
worm, suggesting a probable role of this gene in cell differenti-
ation and proliferation of E. granulosus. The germinal layer of 
hydatid cysts contains cells that are actively involved in prolif-
eration and differentiation. The upregulation of HoxB7 at this 
stage may be attributed to this process. A dramatic increase in 
HoxB7 expression was demonstrated at the adult stage of the 
parasite, which correlates with the role of the gene in body 
segmentation. Findings of the present study showed that a 
high level of HoxB7 expression has been observed in late stages 
of strobilization; however, further investigations are needed to 
elucidate other possible elements affecting this process.

The Notch signalling pathway is an evolutionarily conserved 
cell signalling system present in most multicellular organisms. 
Notch operates in many cell types and at various stages during 

development. In addition, it regulates numerous developmen-
tal processes [31]. Notch activity modulate multiple aspects of 
metazoan development and has recently been linked to stem 
cell fate and maintenance in adult tissues [32]. Previous stud-
ies on the nematode Caenorhabditis elegans have demonstrated 
that Notch signalling plays a critical role in the development 
and induction of mesoderm and cell fate specification [12]. 
Furthermore, Liu et al. [32] reported that Notch signalling plays 
various fundamental roles during multiple stages of organis-
mal development, in lineage-specific differentiation of plurip-
otent embryonic stem cells and in controlling stem cell num-
bers and their activity. Deng et al. [33] demonstrated that the 
Notch pathway controls the mitotic-to-endocycle transition in 
Drosophila follicle cells. In the present investigation, a 31.3- and 
86.4-fold upregulation of notch was observed in microcysts 
and germinal layer stages, respectively. The findings of the 
present study showed that notch was significantly upregulated 
only in the germinal layer and vesicle/microcyst formation, 
suggesting a probable role of notch gene products in the mitot-
ic cell division and proliferation of E. granulosus. 
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