DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Flavokavain C from Kava (Piper methysticum) Root in the LPS-induced Macrophages

LPS로 유도된 대식세포에서 카바뿌리로부터 분리한 Flavokavain C의 항염증 효과

  • Park, Chung (LINC Project Group, Division of Life Science, Daejeon University) ;
  • Han, Jong-Min (LINC Project Group, Division of Life Science, Daejeon University)
  • 박청 (대전대학교 LINC사업단, 생명과학과) ;
  • 한종민 (대전대학교 LINC사업단, 생명과학과)
  • Received : 2016.08.21
  • Accepted : 2016.11.17
  • Published : 2016.12.30

Abstract

Kava (Piper methysticum, P. methysticum) is used as traditional herbal medicine for urogenital diseases, rheumatisms, gastrointestinal problems, respiratory irritations, and pulmonary pains. We identified a flavokavain C (FKC) from P. methysticum, which showed anti-inflammatory activity on nuclear factor ${\kappa}B$ (NF-${\kappa}B$)-dependent nitric oxide (NO) production and expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. FKC inhibited accumulation of reactive oxygen species (ROS), such as hydrogen peroxide, and was able to dose-dependently reduce the LPS-induced NO production and the expression of various inflammation-associated genes (iNOS, IL-$1{\beta}$, IL-6) through inhibition of NF-${\kappa}B$ and MAPKs (ERK and JNK). In conclusion, these results indicate that FKC may have the potential to prevent inflammation process including NF-${\kappa}B$ and MAPKs pathways, and it could be applicable to functional cosmetics for anti-inflammation and antioxidant properties.

카바(Piper methysticum, P. methysticum)는 비뇨생식기 질환, 류머티즘, 위장 장애, 호흡기 자극 및 폐 통증에 대해 전통적으로 사용되는 것으로 알려져 있다. 본 연구에서는 카바에서 분리된 flavokavain C (FKC)가 염증성 유전자의 발현에 관여하는 전사인자인 핵요소-${\kappa}B$ (NF-${\kappa}B$) 의존성 산화 질소(NO) 생산 및 산화 질소 합성 효소(iNOS)의 발현에 리포폴리사카라이드(LPS) 처리된 대식세포에서 항 염증 활성을 나타낸다는 것을 확인하였다. FKC는 과산화수소와 같은 반응성 산소 종(ROS)의 축적을 억제하고, LPS로 유도된 NO 생성 및 각종 염증 관련 유전자(iNOS, IL-$1{\beta}$, IL-6)의 발현을 NF-${\kappa}B$ 및 MAPKs (ERK 및 JNK)의 억제를 통해 농도 의존적으로 줄일 수 있었다. 결론적으로, 이러한 결과는 FKC가 NF-${\kappa}B$ 경로와 MAPKs 포함한 염증 프로세스를 억제하는 능력을 가지고 있음을 나타내며, 이는 항 염증 및 항산화 효능 기반 기능성 화장품에 적용될 수 있음을 암시한다.

Keywords

References

  1. E. A. Tanghtti, The Role of Inflammation in the Pathology of Acne, J. Clin. Aesthet. Dermatol., 6(9), 27 (2013).
  2. C. Bogdan, Nitric oxide and the immune response, Nat. Immunol., 2(10), 907 (2001). https://doi.org/10.1038/ni1001-907
  3. M. Fujihara, M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda, Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex, Pharmacol. Ther., 100(2), 171 (2003). https://doi.org/10.1016/j.pharmthera.2003.08.003
  4. J. J. Haddad, B. Safieh-Garabedian, N. E. Saade, S. A. Kanaan, and S. C. Land, Chemioxyexcitation (delta $pO_2/ROS$)-dependent release of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$: evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium, Cytokine, 13(3), 138 (2001). https://doi.org/10.1006/cyto.2000.0789
  5. M. Dlaska and G. Weiss, Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression, J. Immunol., 162(10), 6171 (1999).
  6. J. J. Haddad and S. C. Land, Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated $TNF-{\alpha}$ biosynthesis, Br. J. Pharmacol., 135(2), 520 (2002). https://doi.org/10.1038/sj.bjp.0704467
  7. T. Collins and M. I. Cybulsky, $NF-{\kappa}B$: pivotal mediator or innocent bystander in atherogenesis?, J. Clin. Invest., 107(3), 255 (2001). https://doi.org/10.1172/JCI10373
  8. S. C. Gupta, C. Sundaram, S. Reuter, and B. B. Aggarwal, Inhibiting $NF-{\kappa}B$ activation by small molecules as a therapeutic strategy, Biochim. Biophys. Acta., 1799(10), 775 (2010). https://doi.org/10.1016/j.bbagrm.2010.05.004
  9. R. Seger and E. G. Krebs, The MAPK signaling cas cade, FASEB J., 9(0), 726 (1995). https://doi.org/10.1096/fasebj.9.9.7601337
  10. B. A. Rose, T. Force, and Y. Wang, Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale, Physiol. Rev., 90(4), 1507 (2010). https://doi.org/10.1152/physrev.00054.2009
  11. M. Ganzera and I. A. Khan, Analytical techniques for the determination of lactones in Piper methysticum Forst, Chromatographia, 50(11-12), 649 (1999). https://doi.org/10.1007/BF02497298
  12. M. Billo, P. Cabalion, J. Waikedre, C. Fourneau, S. Bouttier, R. Hocquemiller, and A. Fournet, Screening of some New Caledonian and Vanuatu medicinal plants for antimycobacterial activity, J. Ethnopharmacol., 96(1), 195 (2005). https://doi.org/10.1016/j.jep.2004.09.008
  13. T. D. Xuan, M. Fukuta, A. C. Wei, A. A. Elzaawely, T. D. Khanh, and S. Tawata, Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots, J. Nat. Med., 62(2), 188 (2008). https://doi.org/10.1007/s11418-007-0203-2
  14. A. R. Bilia, L. Scalise, M. C. Bergonzi, and F. F. Vincieri, Analysis of kavalactones from Piper methysticum (kava-kava), J. Chromatogr. B, 812(1), 203 (2004). https://doi.org/10.1016/S1570-0232(04)00644-0
  15. X. Zi and A. R. Simoneau, Flavokawain A, a novel chalcone from kava extract, induces apoptosis in bladder cancer cells by involvement of Bax protein-dependent and mitochondria-dependent apoptotic pathway and suppresses tumor growth in mice, Cancer Res., 65(8), 3479 (2005). https://doi.org/10.1158/0008-5472.CAN-04-3803
  16. H. R. Dharmaratne, N. P. Nanayakkara, and I. A. Khan, Kavalactones from Piper methysticum, and their 13C NMR spectroscopic analyses, Phytochemistry, 59(4), 429 (2002). https://doi.org/10.1016/S0031-9422(01)00443-5
  17. C. S. Cote, C. Kor, J. Cohen, and K. Auclair, Composition and biological activity of traditional and commercial kava extracts, Biochem. Biophys. Res. Commun., 322(1), 147 (2004). https://doi.org/10.1016/j.bbrc.2004.07.093
  18. C. T. Lin, K. J. Senthil Kumar, Y. H. Tseng, Z. J. Wang, M. Y. Pan, J. H. Xiao, S. C. Chien, and S. Y. Wang, Anti-inflammatory activity of flavokawain B from Alpinia pricei Hayata, J. Agric. Food Chem., 57(14), 6060 (2009). https://doi.org/10.1021/jf900517d
  19. D. Wu, M. G. Nair, and D. L. DeWitt, Novel compounds from Piper methysticum Forst (kava kava) roots and their effect on cyclooxygenase enzyme, J. Agric. Food Chem., 50(4), 701 (2002). https://doi.org/10.1021/jf010963x
  20. V. C. Ridger, E. R. Pettipher, C. E. Bryant, and S. D. Brain, Effect of the inducible nitric oxide synthase inhibitors aminoguanidine and L-N6-(1-iminoethyl) lysine on zymosan-induced plasmaextravasation in rat skin, J. Immunol., 159(1), 383 (1997).
  21. S. K. Katiyar, Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin, Int. J. Oncol., 21(6), 1213 (2002).
  22. C. A. Feghali and T. M. Wright, Cytokines in acute and chronic inflammation, Front. Biosci., 2(1), d12 (1997). https://doi.org/10.2741/A171
  23. F. Folmer, M. Jaspars, M. Dicato, and M. Diederich, Marine natural products as targeted modulators of the transcription factor $NF-{\kappa}B$, Biochem., Pharmacol., 75(3), 603 (2008). https://doi.org/10.1016/j.bcp.2007.07.044
  24. D. U. Ferreiro and E. A. Komives, Molecular mechanisms of system control of $NF-{\kappa}B$ signaling by $I{\kappa}B{\alpha}$, Biochemistry, 49(8), 1560 (2010). https://doi.org/10.1021/bi901948j
  25. W. V. Berghe, S. Plaisance, E. Boone, K. De Bosscher, M. L. Schmitz, W. Fiers, and G. Haegeman, p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear $factor-{\kappa}B$ p65 transactivation mediated by tumor necrosis factor, J. Biol. Chem., 273(6), 3285 (1998). https://doi.org/10.1074/jbc.273.6.3285
  26. A. Lahti, M. Lahde, H. Kankaanranta, and E. Moilanen, Inhibition of extracellular signal-regulated kinase suppresses endotoxin-induced nitric oxide synthesis in mouse macrophages and in human colon epithelial cells, J. Pharmacol. Exp. Ther., 294(3), 1188 (2000).
  27. S. Tanaka, Y. Sakata, K. Morimoto, Y. Tambe, Y. Watanabe, G. Honda, and M. Shimada, Influence of natural and synthetic compounds on cell surface expression of cell adhesion molecules, ICAM-1 and VCAM-1. Planta Med., 67(2), 108 (2001). https://doi.org/10.1055/s-2001-11514