Current Patents and Papers Research Trend of Fuel Cell Membrane

특허 및 논문 게재 분석을 통한 연료전지용 전해질막의 연구동향

  • Woo, Chang Hwa (Planning Center, Gyeongsang National University Academy and Industry Collaboration)
  • 우창화 (경상대학교 산학협력단)
  • Received : 2016.10.31
  • Accepted : 2016.11.22
  • Published : 2016.12.31


The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.

연료전지는 친환경적 에너지 발생원으로 미래의 에너지 부족 문제와 공해 문제를 한꺼번에 해결하기 위한 방법으로 최근 그 연구가 활발히 진행되고 있다. 연료전지는 별도의 발전 장치를 필요로 하지 않고, 수소와 산소의 반응에 의해 전기를 직접 생산하기 때문에 발전 효율이 높다. 연료전지 시스템에서의 핵심 기술은 고분자 분리막을 제조하는 것으로써 상용화된 나피온 전해질막은 제조 단가가 높고 고온에서 성능이 급감한다는 단점이 있다. 따라서 많은 학자들이 나피온 전해질 분리막을 대체하기 위한 연구가 활발히 진행되고 있다. 본 총설에서는 연료전지용 전해질 분리막의 특허 및 논문의 기술 경쟁력 평가를 통하여 국가별, 기관별, 기업별 발표 빈도수를 정리하였으며, 고분자 전해질 연료전지, 직접 메탄올 연료전지, 그리고 알칼리 연료전지에 대한 평가를 진행하였다.


  1. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells", Solid State Ionics, 147, 189 (2002).
  2. V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004).
  3. D. Lu, W. Lu, C. Li, J. Liu, and J. Xu, "Proton conducting composite membranes derived from poly(2,6-dimethyl-1,4-phenylene oxide) doped with phosphosilicate gels", Solid State Ionics, 177, 1111 (2006).
  4. J. Stephens, "Fuel processing for fuel cell power systems", Fuel cells Bulletins, 12, 6 (1996).
  5. D. Y. Kim and J. T. Hwang, "Clean energy technology roadmap", pp. 22-68, KETEP, August (2016).
  6. N. S. An, "Energy technology R&D warehouse: fuel cell", KETEP, October (2012).
  7. J. Y. Park, J. K. Choi, K. J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of mixed casting solvents on morphology and characteristics of sulfonated poly(aryl ether sulfone) membranes for DMFC applications", Membr. J., 18, 282 (2008).
  8. O. Okada and K. Yokoyama, "Development of polymer electrolyte fuel cell cogeneration systems for residential applications", Fuel Cell, 1, 72 (2008).
  9. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membrane for fuel cells operating above $100^{\circ}C$", Chem. Mater., 15, 4896 (2003).
  10. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  11. K. Sundmacher and K. Scott, "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system", Chem. Eng. Sci., 54, 2927 (1999).
  12. B. Pivovar, "2011 Alkaline membrane fuel cell workshop final report" (2012).
  13. M. S. Shin, G. H. Oh, and J. S. Park, "Preparation and characterizations of ferroxane-nafion composite membranes for PEMFC", J. Membr. Sci., 26, 135 (2016).
  14. S. L. Chena, A. B. Bocarsly, and J. Benziger, "Nafion layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005).
  15. S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells", J. Membr. Sci., 243, 327 (2004).
  16. J. Jeong, K. Yoon, J. K. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and characterization of the $H_3PO_4$-doped sulfonated poly(arylether benzimidazole) membrane for polymer electrolyte membrane Fuel Cell", Membr. J., 16, 276 (2006).
  17. M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated perfluorocycobutyl biphenylene polymer electrolyte membranes for fuel cells", Membr. J., 15, 355 (2005).
  18. K. M. Nouela and P. S. Fedkiwa, "Nafion$^{(R)}$based composite polymer electrolyte membranes", Electrochem. Acta., 43, 2381 (1998).
  19. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001).
  20. O. Savadogo, "Emerging membranes for electro chemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications", J. Power Sources, 127, 135 (2004).
  21. M. A. Jeong, D. H. Yu, M. J. Kho, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preperation and characterization of PVdF microporous membrane with additive for recharge battery", Membr. J., 18, 84 (2008).
  22. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H. O. Too, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).
  23. K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi, and K. S. Dhathathreyan, "Effect of solvents on the characteristics of Nafion$^{(R)}$/PTFE composite membranes for fuel cell applications", J. Power Sources, 160, 10 (2006).
  24. M. H. Chen, T. C. Chiao, and T. W. Tseng, "Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996).<1205::AID-APP16>3.0.CO;2-W
  25. J. Kerres, W. Cui, R. Disson, and W. Neubrand, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups", J. Membr. Sci., 139, 211 (1998).
  26. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta, 46, 2401 (2001).
  27. F. Lufrano, G. Squadrito, A. Patti, and E. P. lacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000).<1250::AID-APP9>3.0.CO;2-R
  28. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000).
  29. H. S. Shin, C. S. Lee, J. H. Jun, S. Y. Jung, J. W. Rhim, and S. Y. Nam, "Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) suing sulfonated polysulfone", Membr. J., 12, 247 (2002).
  30. T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl- 1,4-phenylene)", Solid State Ionics, 106, 219 (1998).
  31. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001).
  32. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001).
  33. D. J. Jones and J. Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications", J. Membr. Sci., 185, 41 (2001).
  34. M. K. Jung and S. Y. Nam, "Reviews on preparation and membrane applications of polybenzimidazole polymers", Membr. J., 26, 253 (2016).
  35. B. K. Park, S. H. Kong, Y. J. Kim, and S. Y. Nam, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) - Preparation and properties of sulfonated SEBS (SSEBS)-clay hybrid membranes -", Membr. J., 15, 165 (2005).
  36. S. W. Yoon and D. H. Kim, "Preparation and characterization of PVA/PAM electrolyte membranes containing silica compound for direct methanol fuel cell application", Polymer(Korea), 34, 45 (2010).
  37. J. H. Sauk and G. Shul, "Effect of crossover on the performance of direct methanol fuel cell(DMFC)", Chem. Eng. J., 37, 21 (1999).
  38. B. S. Lee, S. K. Jung, and J. W. Rhim, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications", Membr. J., 35, 296 (2011).
  39. Y. M. Lee and H. B. Park, "Development of membrane materials for direct methanol fuel cell", Membr. J., 10, 103 (2000).
  40. V. I. Matryonin, A. T. Ovchinikov, and A. P. Tzedilkin, "Investigation of the operating parameters influence on H2-O2 alkaline fuel cell performance", Int. J. Hydrogen Energy, 22, 1047 (1997).
  41. B. Xing and O. Savadogo, "Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)", Electrochem. Commun., 2, 697 (2000).
  42. T. Burchardt, P. Gouerec, E. Sanchez-Cortezon, Z. Karichev, and J. H. Miners, "Alkaline fuel cells: Contemporary advancement and limitations", Fuel Cells, 81, 2151 (2002).
  43. J. R. Varcoe and R. C. T. Slade, "Prospects for alkaline anion-exchange membranes in low temperature fuel cells", Fuel Cells, 5, 187 (2005).
  44. B. Y. S. Lin, D. W. Kirk, and S. J. Thorpe, "Performance of alkaline fuel cells: a possible future energy system", J. Power Sources, 161, 474 (2006).
  45. C. H. Woo, "Study on matrix module for predicting of emerging ICT technology", master degree Dissertation, Univ. of Hoseo, asan, Chungcheongnam-do (2014).
  46. "Analysis of ICT technology competitiveness using quantitative information for 2015", pp. 11-15, IITP, December (2015).
  47. "Development of core components and element technology for wearable smart device", pp. 232-233, KISPEP, January (2016).
  48. S. Y. No, G. Y. Jang, M. J. Kim, and J. W. Lee, "2009 National R&D patent performance survey, analysis report", pp. 109-110, KIPO, December (2009).