DOI QR코드

DOI QR Code

Multiscale-Architectured Functional Membranes Based on Inverse-Opal Structures

멀티스케일 아키텍쳐링 기반 역오팔상 구조체 기능성 멤브레인 기술

  • Yoo, Pil J. (School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU))
  • 유필진 (성균관대학교 화학공학과)
  • Received : 2016.12.20
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

Novel membrane technologies that harness ordered nanostructures have recently received much attention because they allow for high permeability due to their reduced flow resistance while also maintaining high selectivity due to their isoporous characteristics. In particular, the opaline structure (made from the self-assembly of colloidal particles) and its inverted form (inverse-opal) have shown strong potential for membrane applications on account of several advantages in processing and the resulting membrane properties. These include controllability over the pore size and surface functional moieties, which enable a wide range of applications ranging from size-exclusive separation to catalytically-reactive membranes. Furthermore, when combined with multiscale architecturing strategies, inverse-opal-structured membranes can be designed to have specific pores or channel structures. These materials are anticipated to be utilized for next-generation, high-performance, and high-value-added functional membranes. In this review article, various types of inverse-opal-structured membranes are reviewed and their functionalization through hierarchical structuring will be comprehensively investigated and discussed.

최근 들어 정렬구조의 나노구조체를 이용한 분리막 응용기술이 큰 관심을 받고 있다. 나노구조체 분리막은 낮은 흐름저항을 통해 높은 투습성을 유지하면서도 매우 균일한 기공크기 특성으로 인해 높은 분리선택비를 가질 수 있다는 장점을 지닌다. 특히 콜로이드 입자의 자기조립체인 오팔상 및 그 역구조인 역오팔상 구조체를 이용한 분리막 기술이 각광을 받고 있는데, 기공크기를 자유롭게 제어하면서도 내부에 다양한 기능기의 도입이 가능하여 크기선별 분리 뿐 아니라 반응성 분리막의 응용에까지 폭넓게 적용이 가능하다. 더불어 다양한 멀티스케일 구조화 기술을 이용하여 기존의 분리막 소재에서는 다룰 수 없었던 다양한 형태의 기공 및 채널구조를 도입할 수 있어, 차세대 고부가가치 분리막 소재기술에 있어 큰 활용이 기대된다. 본 기고에서는 다양한 소재를 활용한 역오팔상 구조체 분리막 기술과 더불어 계층구조화를 통한 기능성 분리막의 개발에 대해 총괄적으로 살펴보고 논의하고자 한다.

Keywords

References

  1. B. Jung and N. Kim, "Preparation and characterization of microfiltration membranes for water treatment", Membr. J., 24, 50 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.50
  2. C.-H. Yun, J.-H. Kim, K. W. Lee, and S. H. Park, "Water treatment application of a large pore micro-filtration membrane and its problems", Membr. J., 24, 194 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.194
  3. T. H. Lee, H. D. Lee, and H. B. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 351 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.351
  4. D. L. Gin and R. D. Noble, "Designing the next generation of chemical separation membranes", Science, 332, 674 (2011). https://doi.org/10.1126/science.1203771
  5. D. Wang, K. Li, and W. Teo, "Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes", J. Membr. Sci., 163, 211 (1999). https://doi.org/10.1016/S0376-7388(99)00181-7
  6. N. A. Hashim, F. Liu, M. M. Abed, and K. Li, "Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion", J. Membr. Sci., 415, 399 (2012).
  7. G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review", Ind. Eng. Chem. Res., 50, 3798 (2011). https://doi.org/10.1021/ie101928r
  8. S. Rangou, K. Buhr, V. Filiz, J. I. Clodt, B. Lademann, J. Hahn, A. Jung, and V. Abetz, "Self-organized isoporous membranes with tailored pore sizes", J. Membr. Sci., 451, 266 (2014). https://doi.org/10.1016/j.memsci.2013.10.015
  9. S.-H. Kim, S. Y. Lee, S.-M. Yang, and G.-R. Yi, "Self-assembled colloidal structures for photonics", NPG Asia Mater., 3, 25 (2011). https://doi.org/10.1038/asiamat.2010.192
  10. J. Zhang, Z. Sun, and B. Yang, "Self-assembly of photonic crystals from polymer colloids", Curr. Opin. Colloid Interface Sci., 14, 103 (2009). https://doi.org/10.1016/j.cocis.2008.09.001
  11. S. Gasser, F. Paun, A. Cayzeele, and Y. Brechet, "Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres", Scr. Mater., 48, 1617 (2003). https://doi.org/10.1016/S1359-6462(03)00139-8
  12. K. E. Mueggenburg, X.-M. Lin, R. H. Goldsmith, and H. M. Jaeger, "Elastic membranes of close-packed nanoparticle arrays", Nat. Mater., 6, 656 (2007). https://doi.org/10.1038/nmat1965
  13. E. Green, E. Fullwood, J. Selden, and I. Zharov, "Functional membranes via nanoparticle self-assembly", Chem. Commun., 51, 7770 (2015). https://doi.org/10.1039/C5CC01388G
  14. Y. Wang and F. Caruso, "Macroporous zeolitic membrane bioreactors", Adv. Funct. Mater., 14, 1012 (2004). https://doi.org/10.1002/adfm.200400144
  15. B. Mandlmeier, J. M. Szeifert, D. Fattakhova- Rohlfing, H. Amenitsch, and T. Bein, "Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal", J. Am. Chem. Soc., 133, 17274 (2011). https://doi.org/10.1021/ja204667e
  16. S. H. Park and Y. Xia, "Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates", Chem. Mat., 10, 1745 (1998). https://doi.org/10.1021/cm9801993
  17. S. H. Park and Y. Xia, "Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores", Adv. Mater., 10, 1045 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1045::AID-ADMA1045>3.0.CO;2-2
  18. B. Gates, Y. Yin, and Y. Xia, "Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures", Chem. Mat., 11, 2827 (1999). https://doi.org/10.1021/cm990195d
  19. S. J. Yeo, H. Kang, Y. H. Kim, S. Han, and P. J. Yoo, "Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates", ACS Appl. Mater. Interfaces, 4, 2107 (2012). https://doi.org/10.1021/am300072p
  20. H. He, M. Zhong, D. Konkolewicz, K. Yacatto, T. Rappold, G. Sugar, N. E. David, J. Gelb, N. Kotwal, A. Merkle, and K. Matyjaszewski, "Threedimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible $CO_2$ capture", Adv. Funct. Mater., 23, 4720 (2013).
  21. X. Wang, S. M. Husson, X. Qian, and S. R. Wickramasinghe, "Inverse colloidal crystal ultrafiltration membranes", Sep. Purif. Technol., 93, 33 (2012). https://doi.org/10.1016/j.seppur.2012.03.026
  22. G. H. Choi, D. K. Rhee, A. R. Park, M. J. Oh, S. Hong, J. J. Richardson, J. Guo, F. Caruso, and P. J. Yoo, "Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes", ACS Appl. Mater. Interfaces, 8, 3250 (2016). https://doi.org/10.1021/acsami.5b11021
  23. Y. H. Kim, H. Kang, S. Park, A. R. Park, Y. M. Lee, D. K. Rhee, S. Han, H. Chang, D. Y. Ryu, and P. J. Yoo, "Multiscale porous interconnected Nanocolander network with tunable transport properties", Adv. Mater., 26, 7998 (2014). https://doi.org/10.1002/adma.201402436
  24. D. K. Rhee, B. Jung, Y. H. Kim, S. J. Yeo, S.-J. Choi, A. Rauf, S. Han, G.-R. Yi, D. Lee, and P. J. Yoo, "Particle-nested inverse opal structures as hierarchically structured large-scale membranes with tunable separation properties", ACS Appl. Mater. Interfaces, 6, 9950 (2014). https://doi.org/10.1021/am5029654
  25. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, "Assembly of largearea, highly ordered, crack-free inverse opal films", Proc. Natl. Acad. Sci. U.S.A., 107, 10354 (2010). https://doi.org/10.1073/pnas.1000954107