References
- Agrawal, D. and Schorling, C. (1996), Market share forecasting: an empirical comparison of artificial neural networks and multinomial logit model, J Retail, 72, 383-407. https://doi.org/10.1016/S0022-4359(96)90020-2
- Armano, G., Marchesi, M., and Murru, A. (2005), A hybrid genetic-neural architecture for stock indexes forecasting, Information Sciences, 170(1), 3-33. https://doi.org/10.1016/j.ins.2003.03.023
- Baghchesaraei, A., Kaptan, M. V., and Baghchesaraei, O. R. (2015), Using Prefabrication Systems in Building Construction, International Journal of Applied Engineering Research, 10(24), 44258-44262.
- Baghchesaraei, O. R. and Baghchesaraei, A. (2014), Analytical survey of structural engineering and long-term resistive environmental elements in an Iranian magnificent palace, International Journal of Civil and Structural Engineering, 4(3), 372-380.
- Baghchesaraei, O. R., Lavasani, H. H., and Baghchesaraei, A. (2016), Behavior of Prefabricated Structures in Developed and Developing Countries, Bulletin de la Societe des Sciences de Liege, 85, 1229-1234.
- Banerjee, A., Awasthy, D., and Gupta, V. (2005), A choice modelling approach to evaluate effective-ness of brand development initiatives, International Journal of Management and Decision Making, 6(2), 180-198. https://doi.org/10.1504/IJMDM.2005.006031
- Barthwal, R. R. (2007), Industrial Economics: an introductory text book, New Age International.
- Bates, J. M. and Granger, C. W. J. (1969), The combination of forecasts, Journal of the Operational Research Society, 20(4), 451-468. https://doi.org/10.1057/jors.1969.103
- Bentz, Y. and Merunka, D. (2000), Neural networks and the multinomial logit for brand choice modelling: a hybrid approach, Journal of Forecasting, 19(3), 177-200. https://doi.org/10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6
- Borenstein, S. (1990), Airline mergers, airport dominance, and market power, The American Economic Review, 80(2), 400-404.
- Buzzell, R. D., Gale, B. T., and Sultan, R. G. M. (1975), Market share-a key to profitability, Harvard business review, 53(1), 97-106.
- Chen, K.-Y. and Wang, C.-H. (2007), A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan, Expert Systems with Applications, 32(1), 254-264. https://doi.org/10.1016/j.eswa.2005.11.027
- Cheng, J.-H., Chen, H.-P., and Lin, Y.-M. (2010), A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5, Expert systems with Applications, 37(3), 1814-1820. https://doi.org/10.1016/j.eswa.2009.07.019
- Clemen, R. T. (1989), Combining forecasts: A review and annotated bibliography, International journal of forecasting, 5(4), 559-583. https://doi.org/10.1016/0169-2070(89)90012-5
- Fish, K. E., Johnson, J. D., Dorsey, R. E., and Blodgett, J. G. (2004), Using an artificial neural network trained with a genetic algorithm to model brand share, Journal of Business research, 57(1), 79-85. https://doi.org/10.1016/S0148-2963(02)00287-4
- Gan, C., Limsombunchai, V., Clemes, M., and Weng, A. (2005), Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models, Journal of Social Sciences, 1(4), 211-219. https://doi.org/10.3844/jssp.2005.211.219
- Gorunescu, F. (2006), Benchmarking probabilistic neural network algorithms, In Proceedings of International Conference on Artificial Intelligence and Digital Communications, 1-7.
- Guadagni, J. D. C. and Little (1983), A Logit Model of Brand Choice Calibrated on Scanner Data, Mark Sci., 2, 203-238. https://doi.org/10.1287/mksc.2.3.203
- Hansen, G. S. and Wernerfelt, B. (1989), Determinants of firm performance: The relative importance of economic and organizational factors, Strategic management journal, 10(5), 399-411. https://doi.org/10.1002/smj.4250100502
- Hruschka, H. (2007), Using a heterogeneous multinomial probit model with a neural net extension to model brand choice, Journal of Forecasting, 26(2), 113-127. https://doi.org/10.1002/for.1013
- Hruschka, H. Fettes, W., Probst, M., and Mies, C. (2002), A flexible brand choice model based on neural net methodology A comparison to the linear utility multinomial logit model and its latent class extension, OR Spectrum, 24(2), 127-43. https://doi.org/10.1007/s00291-002-0095-1
- Hu, M. Y. (2003), Tsoukalas C. Explaining consumer choice through neural networks: The stacked generalization approach, European Journal of Operational Research, 146(3), 650-660. https://doi.org/10.1016/S0377-2217(02)00368-5
- Hu, M. Y., Shanker, M., Zhang, G. P., and Hung, M. S. (2008), Modeling consumer situational choice of long distance communication with neural networks, Decision Support Systems, 44(4), 899-908. https://doi.org/10.1016/j.dss.2007.10.009
- Kalwani, M. U., Yim, C. K., Rinne, H. J., and Sugita, Y. (1990), A price expectations model of customer brand choice, Journal of Marketing Research, 251-262.
- Karaboga, D. (2005), An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyesuniversity, engineering faculty, computer engineering department, 200.
- Karaboga, D. and Akay, B. (2007), Artificial bee colony (ABC) algorithm on training artificial neural networks, In IEEE 15th Signal Processing and Communications Applications.
- Karaboga, D. and Akay, B. (2009), A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
- Karaboga, D. and Basturk, B. (2007), A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization, 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x
- Karaboga, D. and Basturk, B. (2007), A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x
- Karaboga, D., Gorkemli, B., Ozturk, C., and Karaboga, N. (2014), A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artificial Intelligence Review, 42(1), 21-57. https://doi.org/10.1007/s10462-012-9328-0
- Kaya, T., Aktas, E., Topcu, I., and Ulengin, B. (2010), Modeling toothpaste brand choice: an empirical comparison of artificial neural networks and multinomial probit model, International Journal of Computational Intelligence Systems, 3(5), 674-687. https://doi.org/10.1080/18756891.2010.9727732
- Kazemi, S. M. R., Hadavandi, E., Mehmanpazir, F., and Nakhostin, M. M. (2013), A hybrid intelligent approach for modeling brand choice and constructing a market response simulator, Knowledge-Based Systems, 40, 101-110. https://doi.org/10.1016/j.knosys.2012.11.016
- Khashei, M., Hejazi, S. R., and Bijari, M. (2008), A new hybrid artificial neural networks and fuzzy regression model for time series forecasting, Fuzzy Sets and Systems, 159(7), 769-786. https://doi.org/10.1016/j.fss.2007.10.011
- Kiran, M. S. and Findik, O. (2015), A directed artificial bee colony algorithm, Applied Soft Computing, 26, 454-462. https://doi.org/10.1016/j.asoc.2014.10.020
- Kumar, A., Rao, V., and Soni, H. (1995), An empirical comparison of neural network and logistic regression models, Marketing Letters, 6(4), 251-263. https://doi.org/10.1007/BF00996189
- Lee, W.-I., Shih, B.-Y., and Chung, Y.-S. (2008), The exploration of consumers' behavior in choosing hospital by the application of neural network, Expert systems with applications, 34(2), 806-816. https://doi.org/10.1016/j.eswa.2006.10.020
- Reid, M. J. (1968), Combining three estimates of gross domestic product, Economica, 35, 431-444. https://doi.org/10.2307/2552350
- Specht, D. F. (1990), Probabilistic neural networks and the polynomial adaline as complementary techniques for classification. Neural Networks, IEEE Transactions on.
- Specht, D. F. (1990), Probabilistic neural networks, Neural networks, 3(1), 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
- van Wezel, M. and Potharst, R. (2007), Improved customer choice predictions using ensemble methods, European Journal of Operational Research, 181(1), 436-452. https://doi.org/10.1016/j.ejor.2006.05.029
- Vroomen, B., Franses, P. H., and van Nierop, E. (2004), Modeling consideration sets and brand choice using artificial neural networks, European Journal of Operational Research, 154(1), 206-217. https://doi.org/10.1016/S0377-2217(02)00673-2
- Wasserman, P. D. (1993), Advanced methods in neural networks, Chapter, 3, 35-55.
- West, P. M., Brockett, P. L., and Golden, L. L. (1997), A comparative analysis of neural networks and statistical methods for predicting consumer choice, Marketing Science, 16(4), 370-391. https://doi.org/10.1287/mksc.16.4.370
- Wierenga, B., van Bruggen, G. H., and Althuizen, N. A. P. (2008), Advances in marketing management support systems. Springer US.
- Xiang, W.-L. and An, M.-Q. (2013), An efficient and robust artificial bee colony algorithm for numerical optimization, Computers and Operations Research, 40(5), 1256-1265. https://doi.org/10.1016/j.cor.2012.12.006